1. Computing Blocking Flows

(a) Why? Edmonds-Karp algorithm: remove augmenting paths with smallest number of edges increases length of such path. $O(n)$ blocking flows give maxflow.

(b) Have a DAG, want to find a flow so there are no more paths going along direction of edges.

(c) Difference with maxflow: can still have augmenting paths that take edges backwards.

(d) $O(nm)$ time algorithm: find path, saturate edge with minimum remaining capacity on that edge.

(e) Faster algorithm due to Sleator and Tarjan: $O(m \log n)$ per blocking flow, $O(mn \log n)$ total. Reason for invention of dynamic trees.

(f) Idea: if vertex has path of non-saturated edges out of it, reuse it until no longer usable.

(g) Invariant: each vertex currently considering one edge out of it.

(h) DAG ensures we have a forest.

(i) Recall: dynamic tree, represent real tree as a series of virtual trees, each corresponding to a path.

(j) Always try to extend forest at root of current node.

(k) If reaches t, push flow equaling to minimum remaining capacity.

(l) Need to decrease remaining capacities on all edges from s to t (which is at root) in the real tree.

(m) Operations needed on virtual trees: findmin, decrease range.

(n) Flow Decomposition: figure out which edge leaving s goes to which edge entering t. Can be done by finding blocking flow in flow graph.