1. Definitions:
 (a) Matching on G: a set of edges without common vertices
 (b) Maximum matching on G: a matching of maximum cardinality over all possible
 matchings on G (different from a maximal matching!)
 (c) Free vertex: v s.t. no edge on matching M is incident to v
 (d) Alternating path: path P in G such that every other edge in P is in the
 matching M
 (e) Augmenting path: alternating P with start and end vertices free
2. Berge’s Lemma: a matching M in G is maximum iff no augmenting paths exist.
 (a) If G has an augmenting path P, consider $M' = P \oplus M$. Observe M' is a
 matching with $|M'| = |M| + 1$.
 (b) Suppose M is not maximum, i.e. there exists matching M' with $|M'| > |M|$.
 Consider $D = M \oplus M'$. D must consist of even cycles and paths whose edges
 alternate between M and M'. Since M' is larger, D contains some path that
 starts and ends with an edge from M', i.e. an augmenting path.
3. This gives us the general idea for finding a maximum matching on G:
 (a) Set $M \leftarrow \phi$
 (b) Set $P \leftarrow \text{find_augmenting_path}(G, M)$
 (c) If P non-empty, set $M \leftarrow M \oplus P$ and go to (b).
 (d) Else, return M
4. Easy: find_augmenting_path on bipartite graphs
 (a) Create auxiliary structure M-alternating forest – initialize F as singleton trees
 with roots = exposed vertices in M; label these vertices ‘red’
 (b) For each red vertex u, iterate through all edges $(u,v) \notin F$. Two cases:
 i. v is not in F, i.e. v must be in M. Suppose (v,v') is matched edge in M.
 Add (u,v) and (v,v') to F, label v ‘blue’ and v' red.
 ii. v is in F. Then v must be red and in a different tree from u (why?). Root
 of $u \rightarrow \ldots \rightarrow u \rightarrow v \rightarrow \ldots \rightarrow$ root of v is an augmenting path, return it.
(c) If no red vertices are connected to each other, no augmenting paths exist, return ϕ.

5. Runtime of `find_augmenting_paths` is $O(m)$, so runtime to find maximum matching is $O(mn)$.

6. Hard: `find_augmenting_path` on non-bipartite graphs (i.e. the blossom algorithm)
 (a) Same as before, except possible to have $(u, v) \not\in F$, with u and v red and in same component of F
 (b) Call odd cycle containing u and v the blossom (i.e. a cycle of length $2k + 1$ with k edges in M, call path from root of tree to blossom the stem
 (c) Blossom lemma: suppose M matching in G and B a blossom. Contract B to one vertex, call reduced graph G'. Then there exists augmenting path on G iff there exists augmenting path on G'.
 (d) Strategy if encountering blossom:
 i. Contract B to a vertex, recurse to find augmenting path P' on G'
 ii. Lift P' to P on G, return P

7. Runtime analysis:
 (a) $O(n)$ possible augmenting paths in total
 (b) $O(n)$ blossoms to shrink along each augmenting path
 (c) $O(m)$ work to identify a blossom or augmenting path.
 (d) $O(m)$ work to expand a blossom
 (e) $O(mn^2)$ runtime in total