1 Intro

Given:
- Directed graph G
- m edges, n vertices
- source s, sink t
- a capacity for each edge, denoted by $c(u, v)$ for edge $e = (u, v)$

We also define $f(e) = f(u, v)$ to be the flow on edge (u, v), with constraints:
- $0 \leq f(u, v) \leq c(u, v)$ (the flow is limited by the capacity)
- $\forall \ v \in V : v \neq s, v \neq t \rightarrow \Sigma f(v, w) = \Sigma f(u, v)$ (conversation of flow in and out, except at source and sink)

We want to find the maximum $s - t$ flow, F: that is, we want the maximum flow from source s to sink t, given the above constraints.

2 Ford-Fulkerson Algorithm

A greedy algorithm that calculates the max $s - t$ flow in $O(mF)$ time.

Definitions:
- an augmenting path is a path of edges from s to t, each of which still has some remaining flow (that is, $c(u, v) - f(u, v) > 0$)
- the residual graph G_f is a graph specified by flow f such that:
 - edge $e = (u, v)$ in G_f has capacity $c(u, v) - f(u, v)$
 - edge $e' = (v, u)$ in G_f has capacity $f(u, v)$

Starting with a flow of 0 (that is, $f(e) = 0 \ \forall \ e \in E$), we repeat the following:

1. Find an augmenting path p from s to t in the residual graph. If none exists, exit.
2. Add p to the flow f.
3. Update the residual graph.
4. Repeat, from step 1.

If there does not exist an augmenting path in the residual graph, then we cannot add any more flow from s to t, and we have found the maximum flow.
Runtime analysis:

- $O(m)$ to find the augmenting path (using breadth-first or depth-first search, for example)
- $O(m)$ to update flow f with path p
- $O(m)$ to update the residual graph

so it requires $O(m)$ per iteration, and each iteration adds at least a flow of 1 to the $s - t$ flow. Thus, we require at most $O(F)$ iterations, where F is the maximum $s - t$ flow.

(Show example that requires $O(F)$ iterations.)

How do we improve? Pick the augmenting path ‘smartly’!

3 Edmonds-Karp Algorithm 2

The algorithm follows the steps of the Ford-Fulkerson algorithm, but picks the shortest augmenting path, rather than an arbitrary one.

Analysis:

- Let us rearrange the graph G into levels, where all vertices in level i have minimum distance from s equal to i.
- Let d be the current minimum distance from s to t.
- Note that, when we find a path p (and update the residual graph by removing it and adding the reverse edges), we never create edges going forward.
- Thus, the distance d never decreases.
- Also note that, when we find a path, one or more edges have the limiting capacity, and when we push all flow along the path, we fill these edges.
- Thus, we ‘remove’ at least one edge from the residual graph each time.

We find augmenting paths of length d until no such path exists (and no paths of lesser length exist, by the definition of d). If no such path exists, then the distance between s and t must have changed; as specified, it cannot have dropped, so it must have increased. It must have increased by at least 1, and the distance can be at most n. Thus:

- $O(m)$ time to find an augmenting path (using breadth-first search), add it to the flow, and update the residual graph
- $O(m)$ edges filled and removed before a path of length d no longer exists
- $O(n)$ times that d can increase

yielding a total runtime of $O(nm^2)$.