1. Recall: FullSearch - \(k \)-limited, \(\frac{1}{2} \)-approximation SSSP for weighted graphs
 (a) \(k \)-limited: \(s-t \) path has length at most the length of any \(s-t \) path of size \(k \).
 (b) \(k \)-limited, \(\frac{1}{2} \)-approximate: \(s-t \) path has length at most \(1\frac{1}{2} \) times the length of any \(s-t \) path of size \(k \).
 (c) Work: \(O(m \log L) \), where \(L \) is the sum of all edge lengths
 (d) Depth: \(O\left(\frac{m \log L}{p} + k\right)\)

2. Today: Single-Source Shortest Paths (SSSP) for directed graph with nonnegative integral weights
 (a) Problem: FullSearch still depends on the edge weights
 (b) Idea: Shrink the graph iteratively until edge weights are manageable

3. Shrinking the edge weights in \(\hat{G} \)
 (a) For each edge \(uv \), reduce length by adding a cost for leaving a node:
 \[\hat{l}(uv) = l(uv) + c(u) - c(v) \]
 (b) For a path \(P \) from source \(s \) to \(t \):
 \[\hat{l}(P) = c(s) + l(P) - c(t) \]
 (c) Adding cost function preserves the shortest paths
 (d) When the cost of \(s \) is 0, \(\hat{l}(P) \leq l(P) \)
 (e) Assign \(c(v) \) based on \(d(v) \), but we don’t know exact \(d(v) \)
 (f) Idea: Use estimated distance instead

4. Estimating distances with \(\frac{1}{2} \)-approximate SSSP
 (a) \(\hat{l}(P) \) must stay nonnegative, so estimated distances must be underestimates
 (b) For any \(t \) distance \(d \) from \(s \), the estimated \(d(t) \) is such that \(\frac{1}{2}d \leq d(t) \leq d \)

5. Exact SSSP Algorithm: reduction to \(\frac{1}{2} \)-approximate SSSP
(a) Compute distance estimates $d(v)$ using $\frac{1}{2}$-approximate SSSP
(b) If all distance estimates are 0, return d
(c) Else, recurse on an auxiliary graph \hat{G} with edge lengths:

$$\hat{l}(uv) = [d(u)] + l(uv) - [d(v)]$$

(d) Let \hat{f} be the shortest path lengths in \hat{G}
(e) Return f:

$$f(v) = \hat{f}(v) + [d(v)]$$

6. Proof of correctness

(a) First, \hat{l} remains nonnegative:

$$d(v) \leq d(u) + l(uv)$$

$$[d(v)] \leq [d(u)] + l(uv)$$

$$0 \leq \hat{l}(uv)$$

(b) For any path P from source s to node t:

$$\hat{l}(P) = \sum_{uv \in P} [d(u)] + l(uv) - [d(v)]$$

$$= [d(s)] + l(P) - [d(t)]$$

$$= l(P) - [d(t)]$$

(c) So $f(t)$ does return $l(P)$, where P is the shortest path

7. Lemma: Recursion depth is log L

(a) Let P be the shortest path from s to t
(b) Maximum shortest path length in \hat{G} is at most $\frac{L}{2}$:

$$\hat{l}(P) = l(P) - [d(x)]$$

$$\leq l(P) - \frac{1}{2}l(P) = \frac{1}{2}l(P)$$