This homework has a total of 4 problems on 2 pages. Solutions should be submitted to T-square before 12:05pm on Friday Sep 2.

1. (2 points total over 2 parts) In each of the following situations, indicate whether \(f = O(g) \), \(f = \Omega(g) \), or \(f = \Theta(g) \). Justify your answer.

\[
\begin{array}{c|c|c}
 f(n) & g(n) \\
 \hline
 (a) n^2 & n \log n \\
 (b) n^2 & 2^n \\
\end{array}
\]

2. (3 points total over 3 parts) You are trying to choose between the following three algorithms:

(a) Algorithm A solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time.

(b) Algorithm B solves problems of size \(n \) by recursively solving two subproblems of size \(n - 1 \) and then combining the solutions in constant time.

(c) Algorithm C solves problems of size \(n \) by dividing them into nine subproblems of size \(n/3 \), recursively solving each subproblem, and then combining the solutions in \(O(n^2) \) time.

What are the asymptotic running times (in big-O notation) of each of these algorithms? Which one would you choose?

3. (5 points total over 2 parts) The \(i^{th} \) order statistic of an array is defined as the \(i \) smallest element in the array. One way to find the \(i^{th} \) order statistic is to sort the array in increasing order and return the element in the \(i^{th} \) position. However, this takes \(\Theta(n \log n) \) time. In this problem we will develop a faster algorithm that finds the \(i^{th} \) order statistic in \(O(n) \) time.

Suppose you have access to an algorithm that finds the median of a list in \(O(n) \) time. Note that the median is the \(\lfloor \frac{n}{2} \rfloor^{th} \) order statistic.

(a) (2 points) Consider an \(i^{th} \)-order statistic on an array of size \(n \). Show that given the median of this array, this statistic can be answered using the \(i'^{th} \)-order statistic on an array of size \(n/2 \) for some appropriately chosen \(i' \).
(b) (3 points) Using this median algorithm as a subroutine, design and analyze an \(O(n) \) time algorithm that returns the \(i \)th order statistic of an array \(A \) of \(n \) integers. Explain why your algorithm runs in \(O(n) \) time and why it is correct.

4. (5 points total over 4 parts) The goal of this problem is to devise a fast algorithm that reports the number of mismatches of all ways of fitting a pattern string into a text. The text and pattern are both binary strings, with text as \(T[1 \ldots n] \) and pattern as \(P[1 \ldots m] \). The goal is to compute for each shift value \(i \), the number of matches if we place the pattern into text with shift \(i \). That is, the number of positions \(j \in [1 \ldots m] \) such that

\[
P[j] = T[i + j - 1].
\]

For instance, suppose \(T = 101011 \) and \(P = 101 \), the shifts \(i = 1 \) and \(i = 3 \) both yield 3 matches, while the shift \(i = 4 \) only gives 1 match.

All possible combinations can be tried in \(O(nm) \) time. Below we will see that a faster algorithm is possible by reducing it to a polynomial multiplication problem, which will be discussed in lectures on Aug 29 and 31. The parts below breaks down this reduction.

(a) (1 point) A match can happen with when \(P[j] = 1 \) and \(T[i + j - 1] = 1 \). What does the quantity

\[
M[i] = \sum_{j=1}^{m} P[j]T[i + j - 1]
\]

return? The case of \(M[4] \) in the example above may be helpful.

(b) (1 point) The other type of match can be found by using a similar approach, but after transforming \(T \) and \(P \). Explain how this can be done using an example.

(c) (2 points) Show that all the quantities \(M[i] \) (for \(1 \leq i \leq n - m + 1 \)) can be extracted from product of two suitably chosen polynomials based on \(T \) and \(P \).

Note that for two polynomials in \(x \), \(P(x) \) and \(Q(x) \), with coefficients of \(x^i \) being \(p_i \) and \(q_i \) respectively, the coefficient of \(x^i \) in their product, \(PQ \) is

\[
\sum_{k=0}^{i} p_k q_{i-k}.
\]

(d) (1 point) Using the answers you have obtained so far, devise and analyze an algorithm that computes all the number of matches for all shifts in \(O(n^{1.9}) \) time. You may assume the existence of an \(O(n^{1.8}) \) time algorithm for multiplying two polynomials of degree \(n \).