• DISCLAIMER: These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Last time:
 – What is a verifier?
 – Definition of NP: text book introduces them as search problems on page 249. Our verifier is the same as the algorithm C.

Most of these are problems that we don’t know algorithms that provably do better than brute force. However, we can define reductions between problems: The idea is to directly convert the inputs of the problems. Since we’re dealing with decision problems, these problems have the same output: true and false (equivalent to ‘yes’ and ‘no’ from the previous lecture). This means one strategy that we can take is to create a routine that converts an input of Π_1 to an input of Π_2.

Definition 0.1. A decision problem Π_1 is **polynomial time reducible** to a decision problem Π_2 if there exists a polynomial time computable function f such that for any input x, $\Pi_1(x) = \Pi_2(f(x))$.

We denote this with $\Pi_1 \rightarrow \Pi_2$. It implies that

• if Π_2 can be solved in polynomial time, then Π_1 can also be solved in polynomial time.

• if Π_1 is hard, then so is Π_2.

Reductions play a key role complexity theory. The Cook-Levin theorem states that every problem in NP can be reduced to 3-SAT. This problem takes a set of variables x_1, \ldots, x_n, and defines:

• a **literal** is either an atom x_i or its negation $\neg x_i$.

• A **clause** is the disjunction (“or”) of three literals.

The 3-SAT problem asks, given a propositional formula $\varphi(x_1, \ldots, x_n)$ which is the “and” of finitely many clauses of length 3, does there exist an assignment of either TRUE or FALSE to each x_i which makes $\varphi(x_1, \ldots, x_n)$ evaluate to TRUE?
Theorem 0.2 (Cook-Levin Theorem). *For any problem \(\Pi \) in NP, we have \(\Pi \rightarrow 3-SAT \).*

This motivated the definition of NP-hard problems:

Definition 0.3. A problem is NP-hard if every problem in NP can be reduced to it.

This then leads to the existence of NP-complete problems:

Definition 0.4. A problem \(\Pi \) is NP complete if:

1. It is in \(NP \).

2. Every problem in NP can be reduced to it. This is usually shown by exhibiting a NP-hard problem \(\Pi' \) such that \(\Pi' \rightarrow \Pi \).

Our first NP-hard problem is then 3-SAT: it is in NP because we can just exhibit a satisfying set of variable assignments. It’s NP hard by the Cook-Levin theorem.