• DISCLAIMER: These notes are not necessarily an accurate representation of what
I said during the class. They are mostly what I intend to say, and have not been
carefully edited.

• Main topics:
 – Longest increasing subsequence.
 – (optional) speedups using binary search.

• Textbook:
 – Chapter 6.2.

The longest increasing subsequence problem is given a list of length \(n \), \(a_1 \ldots a_n \), find
the longest subsequence, \(i_1 < i_2 < \ldots < i_k \) such that the corresponding values in \(a \) are
increasing, aka.
\[
a_{i_j} < a_{i_{j+1}}
\]
for all \(1 \leq j < k \).

This can be solved via dynamic programming in two ways: either view it as a longest
path problem in a DAG, or by designing states corresponding to \(a_k = i \).

For the first approach, create vertices \(1 \ldots n \), and put an edge \(i \rightarrow j \) if \(a_i < a_j \), with
length 1. Then any longest increasing subsequence corresponds to a path in this graph,
and it suffices to find the longest path.

For the dynamic program, first consider the brute force search for finding the longest
sequence ending at \(i \):

```
LONGEST(i)
1. Initialize \( L[i] \leftarrow 1 \).
2. For \( j = 1 \) to \( i - 1 \)
   (a) If \( a[j] < a[i] \)
      i. \( L[i] = \max \{ L[i], \text{LONGEST}(j) + 1 \} \).
   (b) Return \( L[i] \).
```

This lends itself to a dynamic program fairly directly: note that only the location of
\(i \), matters for the transition. Iteratively, this leads to the dynamic program:
1. $L[i]$: longest increasing subsequence ending at i.

2. Base case: $L[i] \geq 1$.

3. Transition:

$$L[i] = \max_{j<i, a_j < a_i} L[j] + 1.$$

This algorithm runs in $O(n^2)$ time. From the longest path in a DAG perspective, this is as fast as we can make it, since there can be n^2 edges. This iterative view on the other hand allows us to make the algorithm run even faster, to $O(n \log n)$ time in fact.

The main idea is to compute the maximum value of $L[j]$ for some $a_j < a_i$ faster, in $O(\log n)$ time specifically. There is a simpler way of doing this, but the most systematic is to use the augmented binary search tree discussed in lecture 7 (which was also optional).

We make a balanced binary tree using all the a_i values as keys, while attaching the values of $L[i]$ to the corresponding elements. Then computing the value of $L[i]$ equals to querying for the maximum value of $L[j]$ in the part of the tree to the left of a_i. This takes $O(\log n)$ time if we pre-build an augmented search tree with the a_is as keys.