• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Main topics:
 – Maxflow mincut theorem
 – Residual graphs

• Office hour changes this week:
 – Ashwin: 12:30-2:30pm Tuesday Nov 1.
 – Pranathi: 2-3pm Monday Oct 31, (???)4-5pm Wednesday Nov 2(???).

• Ambiguities from last time:
 – Definition of cuts.
 – Goal of algorithms: finding flows in original graph G / residual graph G_f, and cuts in G / G_f.

Last time we discussed the maximum flow and minimum cut problems. Our description was in terms of unweighted/uncapacitated edges, where the two problems can be described as:

1. Maxflow: find the maximum number of edge-disjoint (directed) paths from s to t.
2. Mincut: remove the fewest number of edges so that there are no more (directed) paths from s to t.

We now introduce capacities on the edges, which we denote with c_e. These can be viewed as having c_e copies of the (unit) edge e. Then the flow on an edge can be denoted with f_e:

$$0 \leq f_e \leq c_e,$$

we will have use the shorthand of f_e / c_e to denote an edge with capacity c_e where we’re sending f_e units of flow along it.

Flow conservation is still the same: amount of inflow equals to the amount of out flow:

$$\sum_{u \rightarrow v} f_{u \rightarrow v} = \sum_{w \rightarrow u} f_{w \rightarrow u}.$$
In residual graphs we have both types of edges: if we continue with the ‘multiple copies of edges’ view, then an edge \(e \) with \(f_e \) units of flow along it requires us to ‘turn around’ \(f_e \) of these units.

So the formal definition of a residual graph \(G_f \) is for each edge \(e = u \rightarrow v \), we have

1. Edge of capacity \(c_e - f_e \) in the forward, \(u \rightarrow v \), direction.
2. Edge of capacity \(f_e \) in the reverse, \(v \rightarrow u \) direction.

Maxflow algorithms can be described as:

\[
\text{While there is an } s \rightarrow t \text{ path on the residual graph, find such a path, and push flow on it until some edge’s capacity is saturated.}
\]

Such a path in \(G_f \) is called a \textbf{augmenting path}. When such an algorithm terminates, we justify its optimality by showing that there exists a cut whose capacity equals to the value of the flow aka. there exists some \(S \) such that

\[
\sum_{e = u \rightarrow v, u \in S, v \notin S} c_{u \rightarrow v} = \sum_{s \rightarrow v} f_{s \rightarrow v}.
\]

We find such a cut by letting \(S \) be all the edges reachable from \(S \) in \(G_f \). There are two kinds of edges in \(G \) on the peripheral/boundary of \(S \):

1. (outgoing) \(u \rightarrow v \) with \(u \in S \) and \(v \notin S \), for such an edge we must have \(f_{u \rightarrow v} = c_{u \rightarrow v} \).

2. (incoming) \(w \rightarrow u \) with \(w \notin S \) and \(u \in S \). For such an edge we can’t have flow on it, because otherwise \(u \rightarrow w \) must be in the residual graph. So \(f_{w \rightarrow u} = 0 \).

Then the above statement about capacity of cut equaling to flow value comes from summing over the residuals of all vertices \(u \in S \).

This leads to algorithms that find maximum flow and minimum cuts that terminate. Their running time is \(O(m|F|) \) where \(|F| \) is the value of the maximum flow.

It can indeed take this long. Consider the graph

\[
s \rightarrow a, s \rightarrow b, a \rightarrow t, b \rightarrow t, a \rightarrow b
\]

where every edge has capacity \(x \) except \(a \rightarrow b \), which has capacity 1. We can keep on finding augmenting paths involving the edge \(a \rightarrow b \), requiring \(2x \) steps to finish. Next time we will see how to reduce this iteration count down to \(O(m \log |F|) \).