• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Main topics:
 - Homework 1 returned: mean 11.6/15, median 13.0/15.
 - Binary trees revisited: they are just divide-and-conquer.
 - Static construction, offline.
 - Augmentation: can store statistics about entire subtrees.

• Comments from last time
 - Lots of undefined symbols / terminologies.
 - Review session / notes? Most important are things that’s on homework 1.
 - How to choose polynomial? There are only two possibilities that we can address: line up the sequences forwards / backwards. Can then further narrow down with example / checking coefficients.

• Test1: in class this Friday (Sep 7, 2016)
 - So far no requests to take it early / late.
 - You may use a sheet of notes on both sides.
 - Coverage: lectures 1-6.
 - Main Topics
 * Asymptotic complexity: O, Ω, and Θ.
 * Designing divide-and-conquer algorithms.
 * Setting up runtime recurrences.
 * Solving recurrences using Master theorem (other methods are optional).
 * Applications of fast multiplication.
 - NOT included:
 * Definition and algorithm of inversion counting.
 * Details of how to multiply numbers faster than n^2.

* Guess and check / recursion tree: master theorem works for everything on
 test.

• Binary Trees
 - Rooted tree, each node has a key.
 - Left subtree of x: all with keys smaller than x, right subtree: all with keys
 larger than x.
 - Goal: tree depth $O(\log n)$.

• Balancing:
 - Unbalanced case: long path.
 - Fix: AVL, Redblack, etc etc etc.
 - Simpler fix: if we know all the keys that we’ll ever insert, pick root to be
 median of all keys beforehand.
 - Depth: same as binary search, $\log_2 n + 1$.

• Insert/delete?
 - Build entire tree.
 - Flag nodes as ‘present’ or not.
 - $O(\log n)$ time rank and update by storing subtree information.
 - Simplification: internal nodes no longer carry keys, just store ‘merged’ infor-
 mation states of their descendants.