• Main Topics
 – Graphs: walks, paths, connectivity.
 – Checking $s \rightarrow t$ reachability in graphs.
 – Shortest path and how to find them.
 – Minimum spanning tree, cut property, and algorithms for finding them.
 – Interface of priority queue.
 – Dijkstra’s algorithm and how to get to $O(m \log n)$.

• NOT included:
 – Speeding up reachability to $O(m)$ using breadth-first-search.
 – Cycle property.
 – How to extract negative cycle from final state of the Bellman-Ford algorithm (you should know that it can be done though).
 – Speeding up Kruskal’s / Prim’s MST algorithms $O(m \log n)$.

• Graphs
 – Vertices, edges, arcs, $G = (V, E, w)$ or $G = (V, E, l)$.
 – Walk: sequence of vertices $v_0 \ldots v_k$ s.t. $v_i \rightarrow v_{i+1} \in E$.
 – Path: Walk with no repeating vertices.
 – If there is a $s \rightarrow t$ walk, there is a $s \rightarrow t$ path.

• Connectivity:
 – Reachability: check if there is path from $s \rightarrow t$
 – Connectivity in $O(nm)$ time by repeatedly propagate ‘reached’ flags.
 – Undirected graph: connected components, vertices are partitioned into connected components.

• $s \rightarrow t$ shortest path:
- Bellman-Ford algorithm: details, correctness, and termination with either paths or a negative cycle.
- Dijkstra’s algorithm: speedup via greedy when all lengths are positive.

• Minimum spanning trees
 - Cut property.
 - Kruskal’s and Prim’s algorithms: proof of correctness by the cut property

Practice Problems

1. Homework 2 Problems 1 - 3 (solutions are posted).

2. Exercises 4.1. and 4.2. in textbook.

3. Exercise 4.7 in textbook:
 You are given a directed graph $G = (V, E)$ with (possibly negative) weighted edges, along with a specific node $s \in V$ and a tree $T = (V, E')$, $E' \subseteq E$. Give an algorithm that checks whether T is a shortest-path tree for G with starting point s. Your algorithm should run in linear time.

 SOLUTION:
 Do a BFS on T to compute the distance from s to all vertices along the tree, let the value to u be $d'[u]$.

 Then check if for all edges $u \rightarrow v$, we have
 \[
 d'[u] + l_{u\rightarrow v} \geq d'[v].
 \]

 If so, T is a shortest path tree, otherwise it’s not.

 Since for each u, $d'[u]$ is the length of a path from s to u, these are overestimates to distances. So we can use it as an intermediate state in the Bellman-Ford algorithm, which means that these distance are optimal if and only if no more update to d' can be made.

4. Exercise 4.8. in textbook:
 Professor F. Lake suggests the following algorithm for finding the shortest path from node s to node t in a directed graph with some negative edges: add a large constant to each edge weight so that all the weights become positive, then run Dijkstra’s algorithm starting at node s, and return the shortest path found to node t. Is this a valid method? Either prove that it works correctly, or give a counterexample.
SOLUTION:
No, consider the graph on 3 vertices:

- $s \rightarrow a$ \[l_{s \rightarrow a} = 1, \]
- $a \rightarrow t$ \[l_{a \rightarrow t} = 1, \]
- $s \rightarrow t$ \[l_{s \rightarrow t} = 10. \]

Clear the shortest path is $s \rightarrow a \rightarrow t$ with total length 2.

But if we add a constant c to all edge lengths, then the length becomes $2 + 2c$ while the length of $s \rightarrow t$ is $10 + c$. Once $c > 9$, we will incorrectly return $s \rightarrow t$ instead.

5. Exercise 4.12 in textbook:

Give an $O(n^2)$ time algorithm for the following task.

Input: An undirected graph $G = (V, E, l)$; edge lengths $l_e > 0$; an edge $e \in E$. Output: The length of the shortest cycle containing edge e.

SOLUTION:
Remove e from G to form G', compute the shortest path between the endpoints of e in G'. Add e to it to complete the cycle.

The runtime is dominated by the cost of computing shortest paths, which is $O(n^2)$. This is correct because any cycle including e is a path between its two endpoints once e is removed, so it suffices to minimize the length of this path.

6. Exercises 5.1. and 5.2. in textbook.

7. Exercise 5.4. in textbook:

Show that if an undirected graph with n vertices has k connected components, then it has at least $n - k$ edges.

SOLUTION:
Let m be the number of edges in his graph.

Note that adding an edge between two different connected components reduced the number of connected components by 1. So we can add $k - 1$ edges to this graph to make things connected.

This connected graph has a spanning tree as a subgraph, which has at least $n - 1$ edges, so we have

$$m + (k - 1) \geq n - 1,$$

which simplifies to $m \geq n - k$.

3
8. Exercise 5.7. in textbook:
 Show how to find the maximum spanning tree of a graph, that is, the spanning tree of largest total weight.

 SOLUTION:
 Negate all edge weights, then run the minimum spanning tree algorithm.

9. Exercise 5.10 in textbook (modified to remove duplicates):
 Let G be an undirected, unweighted graph where all edges have distinct weights. Let T be a MST of graph G. Given a connected subgraph H of G, show that $T \cap H$ is contained in the MST of H.

 SOLUTION:
 By the cut property, and edge e in T must be the minimum in some cut $E(S, V \setminus S)$ of G.
 This same cut on H, $E(S \cap H, V_H \setminus)$ contains strictly fewer edges, so if e is in $T \cap H$, the same cut certifies that it’s in the MST of H.