DISCLAIMER: These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

In the few weeks before the break, we formalized the notion of NP, NP-hardness, NP-completeness, and discussed approximation algorithms. The notion of approximation algorithms is usually to deal with problems that are hard to solve exactly, specifically NP-hard to solve exactly. In this class, we will discuss such an algorithm for maximum cut, and also justify it by showing that maximum cut is NP-complete.

1 2-Approximation for Max-Cut

Recall that a cut in a graph G is the set of edges leaving some set of vertices:

$$E(S, V \setminus S) \overset{\text{def}}{=} \{uv : u \in S, v \notin S\}.$$

The **MaxCut** problem asks to find a cut with the maximum number of edges.

We start by giving a 2-approximation to **MaxCut**. Recall for a maximization problem, the approximation ratio of algorithm A is dened to be

$$\max_I \frac{\text{OPT}(I)}{A(I)}.$$

Here a simple greedy algorithm works: label the vertices

$$v_1 \ldots v_n.$$

For each vertex v_i, put v_i on a side different than the majority of its neighbors among $v_1 \ldots v_{i-1}$.

This ensures that we get at least half of v_i’s neighbors to smaller labeled vertices. Since each edge uv has a larger labelled end point, we get that we get at least half the edges, aka

$$A(I) \geq m(I)$$

where $m(I)$ is the number of edges in I.

On the other hand, we can at most cut all the edges, so we get

$$\text{OPT}(I) \leq m(I).$$

So puttingi these together gives for any input I

$$\frac{\text{OPT}(I)}{A(I)} \leq \frac{m}{m/2} \leq 2,$$

so this is a 2-approximation.
2 VertexCover \rightarrow MaxCut

We now show that MaxCut is NP-hard by reducing VertexCover to it. Combining this with checking that it’s in NP gives that MaxCut is also NP-complete.

The construction is as follows: given a graph G with vertices $v_1 \ldots v_n$, with degrees $deg(v_1) \ldots deg(v_n)$, we create a new graph H by

1. adding a new vertex w, and
2. connect w with each v_i by $deg(v_i) - 1$ parallel edges.

We claim H has a cut of size $2m - k$ if and only if G has an independent set of size k.

Consider a cut in H. Let S be the half that does not contain w. The number of edges cut is

$$\sum_{v \in S} (deg(v) - 1) + |uv : u \in S, v \notin S| = \sum_{v \in S} deg(v) + |uv : u \in S, v \notin S| - |S|.$$

Each edge uv with both end points in S gets counted twice: once per degree term. Each edge uv with one end point in S also gets counted twice: once in the degree term, and once among the number of edges cut. So the above expression equals to

$$2 \cdot |\text{number of edges incident to } S| - |S|.$$

Note that if we have an edge with both endpoints outside of S, we can always increase the above objective by adding one of its endpoints to S. Therefore the only S we need to consider are independent sets. And for those, the objective becomes

$$2m - |S|,$$

which is at least $2m - k$ if and only if $|S| \leq k$.