• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Richard gone this week for personal emergency

• Main topics:
 – Knapsack (book section 6.4).
 – All pairs shortest paths (book section 6.6).

1 **Knapsack**

Problem: Given set of items \(\{1, ..., n\} \), each with weight and value \((w_i, v_i)\) such that \(w_i\) is an integer. For a given \(W\) choose a set of items with total weight \(\leq W\) such that the total value is maximized.

Can choose same item multiple times

1. Let \(K[w]\) be the optimal solution of knapsack with \(W = w\).
2. Base case: \(K[0] = 0\).
3. States: \(K[w]\) with \(w \leq W\)
4. Transition: \(K[w] = \max_i \{K[w - w_i] + v_i : w - w_i \geq 0\}\)

<table>
<thead>
<tr>
<th>Knapsack with repetition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (K[0] = 0)</td>
</tr>
<tr>
<td>2. For each (w = 1) to (W)</td>
</tr>
<tr>
<td>(a) (K[w] = \max_i {K[w - w_i] + v_i : w - w_i \geq 0}).</td>
</tr>
<tr>
<td>3. Return (K[W]).</td>
</tr>
</tbody>
</table>

1. Each transition takes \(O(n)\) time
2. The for loop iterates \(O(W)\) times
3. The full runtime is then $O(nW)$ time.

Can only choose each item once

1. Let $K[w, \{1, ..., i\}]$ be the optimal solution of knapsack with $W = w$, and the set of items $\{1, ..., i\}$

2. Base cases: $K[w, \{1\}] = v_1$ if $w - w_1 \geq 0$, and 0 otherwise

3. States: $K[w, \{1, ..., i\}]$ with $w \leq W$ and $i \leq n$

4. Transition: $K[w, \{1, ..., i\}] = \max\{K[w - w_i, \{1, ..., i - 1\}] + v_i, K[w, \{1, ..., i - 1\}]\}$

<table>
<thead>
<tr>
<th>Knapsack without repetition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $K[w, {1}] = v_1$ if $w - w_1 \geq 0$, 0 otherwise</td>
</tr>
<tr>
<td>2. For $i = 1$ to n</td>
</tr>
<tr>
<td>(a) For each $w = 1$ to W</td>
</tr>
<tr>
<td>i. $K[w, {1, ..., i}] = \max{K[w - w_i, {1, ..., i - 1}] + v_i, K[w, {1, ..., i - 1}]}$</td>
</tr>
<tr>
<td>3. Return $K[W, {1, ..., n}]$.</td>
</tr>
</tbody>
</table>

1. Each transition takes $O(1)$ time

2. The first for loop iterates $O(n)$ times

3. The second for loop iterates $O(W)$ times

4. The full runtime is then $O(nW)$ time.

2 All Pairs Shortest Path

Problem: Given a graph with edge weights, find the shortest path between all pairs of vertices.

Apply Bellman-Ford

The Bellman-Ford algorithm takes a fixed vertex s and returns the shortest path between s and any other vertex v in the graph, taking $O(nm)$ time. Therefore, we could run Bellman-Ford for each vertex as s, obtaining the shortest path between all vertices in $O(n^2m)$ time.

Dynamic Algorithm

This running time can be improved to $O(n^3)$ time with the Floyd-Warshall algorithm by using dynamic programming.

The algorithm is based on the fact that each vertex appears on the shortest ij path at most once.
1. State: \(d[i, j, k] \): shortest \(i \rightarrow j \) path only containing intermediate vertices \(1 \ldots k \).

2. Base case: \(d[i, j, 0] = l(i, j) \).

3. Transition:

\[
d[i, j, k] = \min\{d[i, j, k - 1], d[i, k, k - 1] + d[k, j, k - 1]\}.
\]

4. Ordering: order by \(k \), any order of \(i, j \).

The motivation for the transition is that the path either

- does not use the vertex \(k \), in which case the maximum id on it is \(k - 1 \);

- or it uses \(k \), in which case the portions between \(i \) and \(k \), as well as \(k \) and \(j \), don’t use \(k \), and hence use only ids between 1 and \(k - 1 \).

This has \(O(n^3) \) states, but only \(O(1) \) time for transitions, giving a simple \(O(n^3) \) time algorithm.