DISCLAIMER: These notes are not an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

- Algorithms and decidability.
- Quiz 9.
- Undecidable problems.

Last week we introduced Turing machines, which are finite automatas augmented with tapes, instead of stacks or read-only input. What’s particularly interesting about Turing machines is that they can simulate themselves: one can give a Turing machine \(M \) as well as its input \(w \) to another Turing machine (known as the universal Turing machine), which then simulates running \(M \) on \(w \). This says that in a sense, Turing machine are the most powerful computing objects that we know.

So the question becomes: what can’t Turing machines compute. For this we need the notion of decidability: a Turing machine may either accept, reject, or never terminate on some input. Formally, recall the distinction between a recognizer and a decider:

- A Turing machine recognizes a language \(L \) if it (only) accepts all strings in \(L \).
- A Turing machine decides \(L \) if it always terminates (outputs accept or reject), and recognizes \(L \).

Most of the tasks that we discussed with regular / context free languages are decidable. Some examples from the text book are:

1. \(< B, w >: B \) is a DFA that accepts \(w \).
2. \(< B, w >: B \) is a NFA that accepts \(w \).
3. \(< R, w >: R \) is a regular expression that generates \(w \).
4. \(< A >: A \) is a DFA and \(L(A) = \emptyset \).
5. \(< A, B >: A \) and \(B \) are DFAs and \(L(A) = L(B) \).
6. \(< G, w >: G \) is a CFG that generates \(w \).
7. \(< G >: G \) is a CFG that generates a non-empty language.
1 A Turing-Undecidable Language

The goal today is to give a language that is not decidable, and it has to do with universal Turing machines:

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} . \]

Recall from the definition of universal Turing machines that \(A_{TM} \) is Turing-recognizable. So this is also an example of a problem that is Turing-recognizable, but not Turing-decidable.

The proof is by contradiction: assume \(A_{TM} \) is decidable. Then let \(H \) be a decider, aka

\[H \left(\langle M, w \rangle \right) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \smallskip \text{reject} & \text{if } M \text{ rejects } w, \text{ or does not halt on } w \end{cases} \]

Now consider a machine \(D \) that negates the output of running a Turing machine \(M \) on its own input:

\[D (M) = \neg H \left(M, < M > \right) . \]

In other words,

\[D \left(\langle M \rangle \right) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } < M > \\ \text{reject} & \text{if } M \text{ accepts } < M > \end{cases} \]

Now let’s loop this argument onto itself once again. What happens if we run \(D \) on itself? We would get

\[D \left(\langle D \rangle \right) = \begin{cases} \text{accept} & \text{if } D \text{ does not accept } < D > \\ \text{reject} & \text{if } D \text{ accepts } < D > \end{cases} \]

which gives a contradiction in either case! So the only thing that this could contradict is the existence of such a machine \(D \) that can tell whether a computation terminates.

2 A Turing-Unrecognizable Language

We now take these ideas further to show that there are also languages that are not Turing-recognizable. For this, we use \(\overline{A_{TM}} \), the complement of the languages consists of Turing machines that accept input \(w \).

The proof is by contradiction. Suppose \(\overline{A_{TM}} \) is Turing-recognizable by some Turing machine \(M_2 \), Recall that \(A_{TM} \) is Turing recognizable by some Turing machine \(M_1 \). we show that we can decide on \(A_{TM} \) by running \(M_1 \) and \(M_2 \) in parallel.

Given some input \(w \), consider alternating running \(M_1 \) and \(M_2 \) on some input \(w \), one step each, and return the outcome when either one of them accepts. We claim in either case of \(w \in A_{TM} \) or \(w \notin A_{TM} \), this process will halt:
1. If \(w \) is in \(A_{TM} \), then \(M_1 \) accepts \(w \) after \(k \) steps for some value \(k \), and the overall process halts after \(2k \) steps.

2. If \(w \) is in \(\overline{A_{TM}} \), then \(M_2 \) accepts \(w \) after \(k \) steps for some value \(k \), and the overall process halts after \(2k \) steps as well.

Section 4.2 of the textbook extends this to a theorem giving that a language \(A \) is decidable if and only if it’s both Turing-recognizable and co-Turing-recognizable.