In this lecture we will formalize the equivalence between regular expressions and regular languages. To do so, we first need to formalize the notion of a regular expression. So far we have only been performing regular operations on languages, but haven’t defined the base case. The three base cases are single character, ϵ, and \emptyset. Then a regular expression is formally one of:

1. a for some $a \in \Sigma$.
2. ϵ, the empty string.
3. \emptyset, the empty language. Note that this is not the same as the empty string.
4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions.
5. $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions.
6. (R_1^\ast) where R_1 is a regular expression.

In the first three cases, the corresponding languages are $\{a\}$, $\{\epsilon\}$, and \emptyset respectively. In cases 4 - 6, which are inductive, the languages are formed by performing regular operations on the languages corresponding to R_1 and R_2 (if R_2 is needed).
1 Languages Described by Regular Expressions are Regular

The plan is to show that every language described by a regular expression can be described by an NFA.

The equivalence between NFA and DFAs then gives that such languages are also describable by DFAs, and are thus regular.

The overall proof is by induction on the length of the regular expression. Note that the recursive operations \cup, \circ and \ast all put together shorter expressions. So we can assume that those expressions already correspond to regular languages, and in turn have NFAs that accept them.

The base cases are the three base cases for regular expressions. For these we give explicit constructions:

1. a: two states, with one transition from the start to the accepting state corresponding to a.

2. ϵ: one starting state that’s also accepting.

3. \emptyset: one starting state that’s not accepting.

The inductive case is similar to how we applied regular operations to regular languages. We will work with N_1 and N_2, the NFAs accepting L_1 and L_2 respectively.

1. \cup: a new ‘super starting state’ with ϵ transitions to both starting states of M_1 and M_2.

2. \circ: start at N_1’s starting state, and add ϵ transitions from each accepting state of L_1 to the starting state of N_2.

3. x^\ast: we need to have an ‘extra’ starting state to accept ϵ. For this we create an extra starting state that’s accepting, and has an ϵ transition to the starting state of N_1.

The inductive nature of this proof means we can (and also need to) compose these constructions together. We will work through the example (1.58) in the text book of $(a \cup b)^\ast aba$.

2 Regular Expressions for Regular Languages

It remains to show the other direction of this equivalence. That the language accepted by any DFA is a regular language.

For this, we will gradually shrink a DFA. However, we will allow for regular expressions on the transitions, instead of just a single character from the alphabet. This is knowns a generalized nondeterministic finite automata (GNFA).

For simplicity we assume that a GNFA has:
1. No edges entering its starting state. This can be done by creating a duplicate of the starting state, and direct transitions to the starting state to these instead.

2. Only one accepting state. This can be done by adding ϵ transitions from

3. At most one edge between any pair of states, and at most one self-loop per state. These can be done by removing duplicate edges via the \cup operation: we simply union the regular expressions on parallel edges.

Note that a GNFA with no intermediate states, just start and accept, is precisely a regular expression: only those strings matched by expressions on the one edge from start to accept is accepted.

Our plan is to inductively move to this state, with the key operation being reducing one intermediate state. Consider some intermediate state q_{rip}. Suppose it’s visited at some point in the NFA, with the previous state being q_1, successor being q_2. Then let the expressions on the arrows be:

1. R_1 for going from q_1 to q_{rip}.
2. R_2 for going from q_{rip} to q_2.
3. R for going from q_{rip} to itself.

Then the only sequence of characters matched is first R_1, then some number of R, then R_2. So we can instead add an arrow from q_1 to q_2 with label

$$R_1 \circ (R^*) \circ R_2.$$

Repeating this for every q_1 with arrow to q_{rip}, and every q_2 that q_{rip} has an arrow to then covers all possible ways of passing through q_{rip}, and thus removes the need to go through q_{rip}.
