DISCLAIMER: These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Today’s topics:
 1. Pumping lemma for regular languages
 2. Non-regular languages
 3. Quiz 4
 4. Proof of pumping lemma
 5. More nonregular languages

Given a regular language, we now know a method to prove that it is regular - simply build a finite automaton (DFA or NFA) that accepts the language. But how do we prove that a language is non-regular?

Consider the following example language: \(B = \{0^n1^n \mid n \geq 0\} \). Can we build a DFA/NFA for it? It might require somehow keeping track of the number of 0s seen (which could be arbitrarily large). It seems that might not be possible using a finite number of states. But can we prove definitively that there cannot be a DFA/NFA accepting \(B \)?

1 The pumping lemma

Theorem 1.1 (Pumping Lemma for Regular Languages). *If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is a string in \(A \) and \(|s| \geq p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).
2 Proof of nonregularity using the lemma

Let’s go back to our example language \(B = \{0^n1^n \mid n \geq 0 \} \). We will now use the pumping lemma to prove that \(B \) is not regular.

Assume for the sake of contradiction, that \(B \) is regular. Then, let \(p \) be the pumping length given by the lemma. Pick a string \(s = 0^p1^p \). Since \(s \in B \) and \(|s| \geq p \), the pumping lemma implies that \(s \) can be divided into three pieces \(s = xyz \), such that \(xy^i z \in B \) for all \(i \geq 0 \). Let us consider the ways in which \(s \) cannot be divided into \(x, y \) and \(z \):

1. Suppose \(y \) has only 0s. Then \(xy^2z \) has more 0s than 1s (note that it cannot be length 0 from condition 2 of the lemma), so it cannot be in \(B \).

2. The case where \(y \) has only 1s follows similarly.

3. Suppose \(y \) has both 0s and 1s. Then, in \(xy^2z \), some 1s appear before 0s and so it is not in \(B \).

Hence, there is no division of \(s \) which satisfies the properties of the lemma. This must mean that our initial assumption that \(B \) is regular was false.

Things to note

- You cannot choose \(p \) - you have to assume this is given by the lemma.
- You can choose the string \(s \).
- You cannot choose one particular division of \(s \). You have to prove that no possible division can satisfy the three conditions.

3 Proof of the pumping lemma

We applied the lemma as a black box, but let us see why it is true.

Proof of Theorem 1.1. Since \(A \) is regular, we can construct a DFA \(M \) recognizing it. Let this be \(M = (Q, \Sigma, \delta, q_1, F) \). Let us assign the pumping length to be \(p = |Q| + 1 \). Now, let \(s \) be any string accepted by \(M \) of length at least \(p \). (What if there are no such strings? Then the lemma is true by default!)

Consider the set of states visited by \(M \) on input \(s \). Since \(s \) has at least \(|Q| + 1 \) characters, at least one state must be visited twice. Let \(q_i \) be the first such repeated state. The sequences of states visited look like:

\[q_1, \ldots, q_i, \ldots, q_i, \ldots, q_F \]

Let \(x \) denote the first part of \(s \) which the machine reads before reaching \(q_i \) the first time. Let \(y \) denote the part of \(s \) reads between \(q_i \) and returning to \(q_i \). Let \(z \) be the rest of
the string. Now, it is easy to see that replacing \(y \) with \(y_i \) for any \(i \geq 0 \) will also lead the machine to reach \(q_F \) (condition 1). \(y \) cannot be empty since is is between two separate occurrences of a state (condition 2). Lastly, since \(q_i \) is the first repetition of a state, the number of characters read until then is at most \(|Q| + 1 = p \) (condition 3).

\[\square \]

Note: The converse of the pumping lemma is not true! That is, a language satisfying the lemma may still be non-regular.

4 A few more examples

Example 1: pumping up

Let \(C \) be the language \(\{1^{n^2} \mid n \geq 0\} \). \(C \) is a unary language, which only accepts strings whose lengths are perfect squares. Let’s use the pumping lemma to prove that \(C \) is not regular.

Assume for the sake of contradiction, that \(C \) is regular. Then, let \(p \) be the pumping length given by the lemma. Pick a string \(s = 1^{p^2} \). Since \(s \in C \) and \(|s| \geq p \), the pumping lemma implies that \(s \) can be divided into three pieces \(s = xyz \), such that \(xy^iz \in D \) for all \(i \geq 0 \). So, we have that \(|xy^iz| \) is always a perfect square.

From condition 3, we know that \(|xy| \leq p \implies |y| \leq p \). Then, \(|xy^2z| = |xyz| + |y| \leq p^2 + p < (p + 1)^2 \). Hence, the only way \(|xy^2z| \) can be a perfect square is if \(|y| = 0 \), which contradicts condition 2 of the lemma.

Example 2: pumping down

Let \(D \) be the language \(\{0^i1^j \mid i > j\} \). Let’s use the pumping lemma to prove that \(D \) is not regular.

Assume for the sake of contradiction, that \(D \) is regular. Then, let \(p \) be the pumping length given by the lemma. Pick a string \(s = 0^{p+1}1^p \). Since \(s \in C \) and \(|s| \geq p \), the pumping lemma implies that \(s \) can be divided into three pieces \(s = xyz \), such that \(xy^iz \in D \) for all \(i \geq 0 \).

From condition 3, we know that \(|xy| \leq p \implies y \) has only 0s. Then, \(xy^0z = xz \) has equal or lesser 0s than 1s, which contradicts condition 1 of the lemma.