In this lecture we go into a bit more detail about residue structures. These notes closely follow Evan Chen’s notes at https://web.evanchen.cc/handouts/CRT/CRT.pdf and https://web.evanchen.cc/handouts/ORPR/ORPR.pdf.

Last time we left off at the CRT, which states that if \((x,y) = 1\) (the greatest common divisor of \(x\) and \(y\) is 1), then there is a bijection between \(a \mod x\), \(a \mod y\), and \(a \mod xy\). We begin with a few more uses of it.

Problem 1.1. Let \(n\) be a positive integer and let \(a_1, a_2 \ldots a_k\) \((k \geq 2)\) be distinct integers with \(1 \leq a_i \leq n\) such that

\[n \mid a_i (a_{i+1} - 1) \quad 1 \leq i \leq k - 1. \]

Prove that \(n\) does not divide \(a_k(a_1 - 1)\).

By CRT, we consider the case where \(n = p^e\) for some prime \(p\). Let \(x_i\) be the max power of \(p\) that divides \(a_i\), and \(y_i\) the max power of \(p\) that divides \(a_i - 1\). Note that because \((a_i, a_i - 1) = 1\), either \(x_i\) or \(y_i\) must be 0.

Suppose by contradiction we do have \(p^e | a_i(a_{i+1} - 1)\) (overloading indices to let index \(n + 1\) loop back to 1). Then for each \(i\) we have \(x_i + y_{i+1} \geq e\). If \(x_1 \geq 0\), then we get \(y_1 = 0\), which by the last equation implies \(x_k \geq e\), and in turn \(y_{k-1} = 0\) and \(x_{k-1} \geq e\). So inductively we’d get \(x_i \geq e\). Alternatively, we’d get all \(y_i \geq e\).

This means that each \(a_i\) must either be \(0 \mod p^e\), or \(1 \mod p^e\). Putting these prime powers back together then gives a contradiction to the \(a_i\)s being distinct.

Now for something more intricate:

Problem 1.2. Prove that for every integer \(n\), there are pairwise relatively prime integers \(k_1 \ldots k_n\), each greater than 1, such that \(k_1 \cdot k_2 \ldots \cdot k_n - 1\) is the product of two consecutive integers.

The problem is equivalent to finding

\[x (x + 1) \equiv 1 \pmod{k_i} \]

for all \(1 \leq i \leq n\).

We first show that there are infinitely many \(p\) for which the equation

\[x (x + 1) \equiv 1 \pmod{p} \]

...
has a solution. Suppose not, let the total number of such primes be \(n \). For some value \(L \) which we will use to give a contradiction, consider all products \(x(x + 1) \) for \(x \) between \(1 \ldots 2^L \). The number of products of exponents of these \(n \) primes is at most
\[
L^{2n},
\]
because each can be taken to power at most \(2n \), while the number of products is \(2^L \). Letting \(L \) growing much more than \(n \) gives a contradiction, as \(2^L \) is exponential, \(L^{2n} \) is polynomial (here \(n \) is treated as a constant: this is ok because we are picking \(L \) after picking \(n \)).

So we can find \(n \) primes \(p_1 \ldots p_n \) such that for each \(p_i \), we have some \(x_i \) s.t.
\[
x_i (x_i + 1) \equiv 1 \pmod{p_i}.
\]

By CRT, we can find some \(x \) s.t. \(x(x + 1) \equiv 1 \pmod{p_i} \) for all \(i \).

Informally, CRT essentially says that \(\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \) basically behaves like \(\mathbb{Z}_{p_1 \times p_2} \). This is informal: formalizing CRT in abstract algebra one needs ideals, which I don’t plan to cover in this class.

In the rest of this lecture, I want to discuss the multiplicative structure modulo \(p \) in a bit more detail. The main idea is that everything from \(1 \ldots p - 1 \) can be written as
\[
g^x \mod p
\]
for some \(g \) that we refer to as the generator.

This representation may seem strange. I was first convinced of its utility via the following fact about quadratic residues

Fact 1.3. Let \(p \) be an odd prime. There exists some \(a \) such that
\[
a^2 \equiv -1 \pmod{p}
\]
if and only if \(p \equiv 1 \pmod{4} \).

Because \((-1)^2 = 1\), for this generator, we must have
\[
-1 \equiv g^{\frac{p-1}{2}} \pmod{p}
\]
The ‘root’ of \(-1\) is then \(g^{\frac{p-1}{2}} \).

For this to exist, \(p - 1 \) must be a multiple of 4.

So we want to show that generators do exist modulo \(p \). We denote the order of some value \(x \mod p \) to be the smallest \(e \) such that
\[
x^e \equiv 1 \pmod{p}
\]
The following sequence of steps then allows us to conclude the existence of generators:
1. If \(x^{e_1} \equiv 1 \pmod{p} \) and \(x^{e_2} \equiv 1 \pmod{p} \), then \(x^{(e_1,e_2)} \equiv 1 \pmod{p} \).

2. For any \(x \), \(\operatorname{ord}(x)|(p-1) \). This is by combining step (1) with \(x^{p-1} \equiv 1 \pmod{p} \).

3. For each divisor \(d \) of \(p \), there are at most \(\phi(d) \) elements with order \(d \). Here \(\phi(d) \) is the Euler totient function of \(d \), aka. the number of numbers between 1 and \(d-1 \) that are relatively prime to \(d \).

The bound of at most \(d \) is a direct implication of Lagrange's theorem / Schwarz-Zippel, which states a non-zero degree \(d \) polynomial has at most \(d \) roots modulo a prime \(p \). This lemma is in turn proven using polynomial division (we will revisit this later).

4. For any \(m \), we have
 \[
 \sum_{d|m} \phi(d) = m,
 \]
 so there must be terms with order \(p-1 \).

We will discuss how generators broke algorithm design over the next two weeks. For this class though, we will just stop by yeeting an IMO #6 with generators and orders.

Problem 1.4. Let \(p \) be a prime number. Show that there is a prime \(q \) such that for all integers \(n \), we have

\[
q \not| n^p - p
\]

By generators, we have

\[
p \equiv g^e \pmod{q}
\]

for some integer \(e \). If \((p,q-1) = 1\), we can ‘divide’ \(e \) by \(p \) and set \(n \leftarrow g^{e/p} \). So we must have

\[
p \mid q - 1.
\]

Let \(q = pk + 1 \).

Then because for any \(n \), we have

\[
1 \equiv n^{q-1} \equiv n^{pk}
\]

a sufficient condition for \(q \) is

\[
p^k \not\equiv 1 \pmod{q}.
\]

The ‘magic’ step is to take \(q \) to be a prime factor of

\[
\frac{p^p - 1}{p-1} = \sum_{i=0}^{p-1} p^i.
\]

The overall product has residue \(1+p \) modulo \(p^2 \), so we can choose \(q \) to be not 1 modulo \(p^2 \). Now observe that:

1. \(p \) has order \(p \) modulo \(q \) by construction. This implies \(p|q-1 \).

2. \(k \) is not a multiple of \(p \), since otherwise \(q = kp + 1 \) would be 1 mod \(p^2 \).