Change log:

- Problem 2 (version 3): specified that the partition is on edges: the pieces may share vertices.
- Problem 3&4 (version 3): added condition that $A[i] > i$, and distinguished starting and ending points.
- Problems 9 & 10 (version 2): changed to finding a TSP walk (finish at different vertex than starting), instead of tour (finish and start at same vertex).

This problem set has a total of 10 written problems, plus 2 coding problems, on 2 pages. Written solutions should be submitted to Canvas by 2pm Wednesday Apr 21, 2021. Coding solutions should be submitted separately.

1. Consider a perfect d-level B tree: each node has B children, with leaves numbered 1 \ldots B^d. Express the number of B tree nodes accessed when querying the range $[l, r]$, in terms of the base-B representation of l and r.

 Recall a node is accessed if its corresponding list of values is contained in the range, but its parent’s list is not.

2. Show that any tree on n vertices, for any parameter B, can be partitioned, in $\tilde{O}(n)$ time, into $O(n/B)$ edge-disjoint pieces (that may overlap at vertices) such that:

 (a) The number of edges contained in each piece is at most B
 (b) Each piece has at most 2 vertices with neighbors to other pieces.

3. Consider a sequence specifying ‘jump’ pointers: $A[i]$ says that if we are at i, we can get to location $A[i] > i$ in one step. Note that these pointers only go rightward. Show that a sequence of:

 (a) $\text{MODIFY}(i, x)$ modify some $A[i]$ to $x > i$,
 (b) $\text{QUERY}(l, r)$: return how many ‘jumps’ it takes to get past location r if we start at l,

 can be answered in $O(n^{1.9})$ time total.

4. Same as above, but in $O(n^{1.1})$ time.
5. The number of local maximas of a sequence \(A[l \ldots r] \) to be the number of indices \(l \leq i \leq r \) such that
\[
A[i] > \min_{l \leq j < i} A[j],
\]
and the range local maxima query on an array \(A \) asks for the number of local maximas in the range \([l, r]\). Show that a sequence of \(n \) modifies and range local maxima queries on a sequence of length \(n \) can be answered in \(O(n^{1.9}) \) time.

6. Same as above, but in \(O(n^{1.1}) \) time.

7. Define the distinct sum of a list of numbers to be the sum of the set of numbers with duplicates removed. The range max interval distinct sum query asks, for a given \([l, r]\), the maximum distinct sum of some contained interval \([\hat{l}, \hat{r}]\) with \(\hat{l} \geq l \) and \(\hat{r} \leq r \). Show that \(n \) range max interval distinct sum queries on a static array can be answered in \(O(n^{1.9}) \) time.

8. Same as above, but in \(O(n^{1.1}) \) time.

9. Given a undirected graph on \(n \) vertices consisting of \(n - 1 \) edge with weight 1, and the rest containing edges of weight at least \(\lceil n/3 \rceil \), show that the TSP walk (min weighted walk that visits each vertex at least once) uses a non-tree edge at most once. Note that this walk does not need to end where it started.

10. Give an \(\tilde{O}(n^{1.1}) \) time or faster algorithm for finding, in a weighted undirected graph with a tree and some undirected edges, the min weight walk that uses an off-tree edge at most once.