Dynamic Graphs problems involve maintaining solutions under additions and removal of edges, while maintaining solutions to problems such as:

- **Connectivity** on undirected unweighted graph. Tree/forest can be used to maintain the connectivity.
- **2-connectivity**
- **matching**
- **max flow** this problem is kind of difficult.

When add, or remove edge \((u, v)\) within a forest, considering the connectivity problem, an important aspect about the edge is:

- whether \(u\) and \(v\) are in the same tree
- \(\Leftrightarrow\) whether root of \(u\) is the same with root of \(v\)
- \(\Leftrightarrow\) find the root of a vertex

To do this, we first need to root the trees.

However, the depth of a tree can be really high, \(O(n)\). For example, when there is a path of \(n\) vertices, and the root is at one of the end. Thus, next, we will solve this problem on paths by using BSTs.

1 Dynamic Paths: represent using BSTs

First, we consider the simpler case of the trees being single paths.

![Figure 1: A path to a BST](image)
To reduce the depth of a path, we can first choose the middle node x as the root, and then recursively doing the same on the left and right of x, forming the left and right subtree. Figure 1 shows this process.

In this way, we can change a path to a BST tree, eg. an AVL tree, with depth $O(\log n)$ within $O(\log n)$ time.

When we are inserting a edge with end nodes having different root, we need to combine the two trees. For insertion (or combination) of two trees: split a or b (randomly).

Note: For all path related issues, use treaps.

When insert(r, x), and $x < r$.

We can have the combined tree as in figure 2 which is balanced.

![Figure 2: Combine two trees](image)

2 Dynamic Trees, heavy-light decomposition, amortized analysis.

Path Decompositions of trees:

1. Each non-leaf node assigns/picks a preferred child, forms paths.
2. Each path maintained using a binary search tree.
3. Key quantity: number of different paths encountered along some root-to-leaf path.

Walk up:

1. Find root of x.
2. Repeatly: go from x to the start of its path, take parent pointer.

Heavy-light decompositions:

Lemma 1. In any tree, can pick preferred children of nodes so that any node to root path has $O(\log n)$ non-preferred children.
1. $size(p)$, represents size of a node p, which means the number of nodes in its subtree.

2. For the current tree, rooted with node p, assign preferred child to the node of maximum size.

3. Each non-preferred child q: $size(q) \leq \frac{1}{2} size(p)$, so at most $O(\log n)$ of these along any path.

3 Expander Decompositions

The generalization of this to graphs is expander decompositions.

An (ϵ, α)-expander decomposition \cite{SW19} of a graph $G = (V, E)$ with m edges is a partition of vertices into clusters such that

- each cluster induces subgraph with conductance at least α, where α is the minimum conductance of the clusters.

 \[
 \frac{\text{vol} (E(S, \overline{S}))}{\min\{|S|, |\overline{S}|\}}
 \]

- the number of inter-cluster edges is at most ϵ, where ϵ, the ratio of the weight of inter-cluster edges to the total weight of all edges

1. Simplification: ignore weights and degrees: $\phi(S) \approx \frac{|E(S,\overline{S})|}{\min\{|S|, |\overline{S}|\}}$.

2. Sparsest cut problem: find, or approximate, $\phi(G) = \min_{S \subseteq V} \phi(S)$.

3. Applications: expander partitioning, segmentation.

Expander decomposition: decompose so that each piece has conductance at least α.

1. $E(S, V \setminus S)$: set of edges leaving S, $\text{vol}(S)$: total degree in S.

2. If $E(S, V \setminus S) \leq \beta \text{vol}(S)$, put S into its own cluster.

3. Repeat until termination.

4. Can ensure: size of S halves at each step.

5. Charge each cut edge to the volume of piece: $\alpha \log nm$ edges cut.

References