• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• List ranking

 – Linked list, each node knows predecessor / successor, and has value.

 – Goal: calculate prefix sum.

 – Application: place items in an array, in parallel.

 – Simple algorithm: walk from head of list, \(O(n)\) steps.

• Parallel Complexity

 – Model: each node can store extra information, point to other nodes.

 – Note: this is an approximation of parallel machine.

 * Many other models: distributed, Mapreduce, streaming.

 * Will attempt to be ‘model independent’.

 – Goal for list ranking: parallel complexity, \(O(\log n)\) time, \(O(n)\) work.

• Pointer jumping

 – Every node looks at predecessor’s predecessor, set that as new predecessor.

 * Jumps twice as long each step

 * \(O(\log n)\) rounds, each \(O(n)\) work, total \(O(n \log n)\).

 – Every second node merges with predecessor.

 – list half as big, recurse on it.

 – Hierarchy of lists, each half as big as the other: \(O(\log n)\) rounds, \(O(n)\) total work.

 – Difficulty: finding every other pointer: this is global information.

• Administration

 – This course in one sentence: design algorithms of this form for graphs, matrices, and things in between.
- Enrollment: can enroll more, but need different evaluation scheme.
- Evaluation: problems, solve any 10, present to me or hand in solutions.
- Presentations / projects: depend on enrollment.
- ??? (separate) coding component ???

- Finding every other point
 - Alternate view of pairing: odd locations ‘receive’, even locations ‘send’.
 - Randomized solution: nodes declare themselves as odd/even w.p. 1/2.
 - Issue: even sending to an even. Fix: do nothing on both.

- What if all nodes declare themselves even?
 - X_e: edge e disappears this step: $\mathbb{E}[X_e] = 1/4$.
 - Y: random variable for remaining size.
 - $Y \geq 0, \mathbb{E}[Y] = 3/4n$.
 - Markov inequality:
 \[
 \Pr [Y \geq t] \leq \frac{\mathbb{E}[Y]}{t}.
 \]
 - Apply with $t = 9/10n$: $\Pr [Y \geq 9/10n] \leq (3/4)/(9/10) = 5/6$.
 - W.h.p. $O(\log n)$ steps until size decreases by a constant factor, $O(\log^2 n)$ total rounds.
 - Can also use concentration bounds on all iterations.

- Remarks
 - Prototypical V-cycle algorithm.
 - Can also view as top down divide-and-conquer.
 - Analogous to how treap (a form of balanced BST) works: sampling and data structures have close connections.