• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• What’s a good tree? Criteria that you probably know:
 - Minimum / maximum spanning tree
 - Shortest path tree

• Representative graphs to consider: complete graph, cycle, square mesh. Issues:
 - Some edge must do badly.
 - Large portions of the graph is allowed to do badly
 - Fix: do well 'on average.

• Stretch of an edge uv of G w.r.t. a graph H:
 - Unweighted: $\text{dist}_H(u, v)$.
 - Weighted: $\frac{\text{dist}_H(u, v)}{\text{dist}_G(u, v)}$.
 - Spanner: minimize maximum stretch

• Low stretch trees: T s.t.
 - spanning tree / embeddable into G / doesn’t take shortcuts.
 - $\sum_e \text{stretch}(e) \leq m \log^c n$.

• Low stretch spanning tree on $\sqrt{n} \times \sqrt{n}$ square grid
 - Diameter: \sqrt{n}, some edge must have stretch \sqrt{n}.
 - Recursive C construction.
 - i edges with stretch n/i for all $i = 2^j$, total: $O(n \log n)$.

• Bartal’s Algorithm
 - For simplicity: unweighted
 - Idea: emulate the tradeoff above.
* Decompose into pieces of diameter \(n, n/2, n/4, \ldots, 2^{-i}n, \ldots, 1 \).
* When diameter is \(d \), cut edges lead to stretch \(O(d) \).
 * Need: cut about \(m/d \) edges when decomposing into pieces of diameter \(d \).

 - Recall low diameter decompositions: diameter \(d \), probability of edge being cut \(\leq O(\log n/d) \).
- \textbf{BartalDecompose}(\(G, d \)):
 * Low diameter decompose into pieces of diameter \(d/2 \).
 * Recurse on all pieces.
 * Connect centers together via a shortest path tree.

- Key lemma: stretch of edge cut by piece with diameter \(d \): \(O(d) \).
 * Centers = Steiner vertices
 * Walk up the centers
 * Total distance: \(2(d + d/2 + d/4 + \ldots) = O(d) \).

- Expected stretch of an edge

\[
\sum_{d=2^i} O(d) \frac{\log n}{d} = O(\log^2 n).
\]

 - Embeddable: lose another factor of \(O(\log n) \). Stronger: spanning trees, [AN'12]: \(O(m \log n \log \log n) \). Weaker: trees don’t shorten distances, [FRT '03]: \(O(\log n) \) expected per edge.

- Implementing Low Diameter Decompositions (moved to Notes for Lecture # 3, Aug 25)