Row Sampling in Other Norms

Presenter: Richard Peng
Nov 10, 2015

- **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

- **Summary**
 - Sampling to preserve p-norms.
 - $p - norm$ concentration bounds.
 - Iterative transformation to nice setting.

- **Problem:** given $A \in \mathbb{R}^{n \times d}$, find \tilde{A} s.t. $\|\tilde{A}x\|_p \approx \|Ax\|_p$ for all $x \in \mathbb{R}^d$.
 - Application: speed up ℓ_1-regression.
 - Difference with ℓ_2 row sampling:
 * $n \times 1$ matrix, one row 1, rest all $1/n$.
 * ℓ_2 case: all other rows have leverage score about $1/n^2$, no samples.
 * ℓ_1: important to keep the other rows.
 - This works on graphs:
 * $L^{(G)} \approx L^{(H)}$ implies $\sum_{uv} w_{uv}^{(G)} |x_u - x_v| \approx \sum_{uv} w_{uv}^{(H)} |x_u - x_v|$.
 * Difference: scaling, these terms are actually $\|W^{1/2}A\|_2$ and $\|WA\|_1$.

- **Wishlist for sampling probabilities w:**
 - Add up to something small.
 - Invariant under right multiplicatoin, A same as AM.
 - Invariant under splitting: splitting row i into 2 copies gives 2 rows with probability $w_i/2$.

- **What does work:** $w_i = \sqrt{a_i (a_iW^{-1}a_i^T)^{-1}a_i^T}$, 1-norm Lewis weights.

- **p-norm matrix concentration bound:**
 - Modified isotropic position: if A is a matrix such that:
 * $A^T A = I$, and
all rows of A have the same norm, $\frac{d}{n}$.

Then a uniform sample of $n' = O(d \log d \epsilon^{-2})$ rows, rescaled by n/n' gives $\tilde{A} \approx_\epsilon A$.

$1 < p < 2$: extra factor of $\log \log d$, $p > 2$: $d^{p/2} \log d$.

- **Transformation to this setting:**
 - Split a row a_i into $t w_i$ copies: should now have weight $\frac{1}{t}$ each.
 - Weight of each copy: $\frac{1}{t w_i} a_i$.

- **Normalize to $A^T A = I$:**
 - Quadratic form, after splitting:
 $$\tilde{A}^T \tilde{A} = \frac{1}{t} \sum_i \frac{1}{w_i} a_i^T a_i = A^T W^{-1} A.$$

 - Norm of a single row:
 $$\frac{1}{t w_i^{-2}} a_i M^{-1} a_i^T.$$

 - Should be $1/t$:
 $$w_i^2 = a_i (A^T W^{-1} A)^{-1} a_i$$

- **Connection to leverage scores:**
 - w_i is the leverage score of $W^{-1/2} A$.
 - If we set $\alpha = 1$, $\sum_i w_i = d$, exactly same as Foster’s theorem.

- **Computing w:**
 - Iterative scheme: $w' \leftarrow \left(a_i (A^T W^{-1} A)^{-1} a_i \right)^{1/2}$.
 - Convergence: show if $w \approx_k w'$, $w'' \approx_{\sqrt{k}} w'$:
 * Composition: $A^T W^{-1} A \approx_k A^T W'^{-1} A$.
 * Invert: $(A^T W^{-1} A)^{-1} \approx_k (A^T W'^{-1} A)^{-1}$.
 * Apply to vector a_i, and taking square roots gives the $k^{1/2}$ new bound.