• DISCLAIMER: These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• Summary
 – Sampling matrices via leverage scores.
 – Uniform sampling.
 – Coherence reducing reweighting.

• Leverage score sampling.
 – Given \(n \times d \) matrix \(A \), find \(\tilde{A} \) so that \(\|Ax\|_2 \approx \|\tilde{A}x\|_2 \) for all \(x \).
 – Matrix concentration (Lectures 7 and 11):
 * Let rows of \(A \) be \(a_1^T \ldots a_n^T \).
 * Leverage score: \(\tau_i = a_i^T(A^TA)^{-1}a_i \).
 * Matrix concentration sampling rows w.p. \(\min\{1, \tau_i \log d\} \) gives \(\tilde{A} \) with \(O(d \log d) \) rows s.t. \(A \approx_{O(1)} \tilde{A} \).
 – Application: overconstrained regression: \(\min_x \|Ax - b\|_2 \).

• Computing leverage scores:
 – Lecture 9: solve \(O(\log n) \) linear systems in \(A^TA \).
 – \(A^TA \): \(d \times d \) matrix, but need time \(nd^2 \) to compute.
 – Need a good approximation, \(\tilde{A} \approx A \).
 – Chicken-and-egg problem.

• Solutions:
 – Matrix sketches (Lecture 12): \(\tilde{A} = GA \), can mix up structure of data.
 – (tail) recursive scheme: sample half of \(A \) to obtain \(\hat{A} \), compute leverage scores w.r.t. (a good approximation of) \(\hat{A} \).
 – Performance: \(O(\log(n/d)) \) steps.
Key property of leverage score sampling: can correct for a factor 2 error in leverage score estimation by taking twice as many samples.

- Generalized leverage scores:
 - Issue: \(\hat{A} \) can be lower rank, e.g. \(A = I \).
 - Alternate definition: add \(a_i \) to the space as well.

\[
\tau_{\hat{A}}(a_i) = a_i^T \left(\hat{A}^T \hat{A} + a_i^T a_i \right)^\dagger a_i.
\]

- Computable by doing ‘is in null space’ check.

- Main result:
 - If we sample \(\alpha \) of the rows, \(E_{\hat{A}} \left[\sum_i \tau_{\hat{A}}(a_i) \right] = O(\alpha^{-1}d) \).
 - Use: build a sequence \(A^{(0)}, A^{(1)}, A^{(2)} \ldots \) each a random half of the previous.
 - Then build backwards a sequence of approximations, \(\tilde{A}^{(i)} \approx A^{(i)} \).
 - Structural theorem gives that leverage scores of \(A^{(i)} \) lead to \(O(d \log d) \) sized approximation to \(A^{(i-1)} \).

- Proof of main result:
 - Current view: pick \(i \), then pick \(\hat{A} \).
 - Equivalent process: pick \(\hat{A} \cup \{ i \} \), then pick \(i \) from it.
 - \(\hat{A} \) has \(\alpha n + 1 \) rows, total leverage score: \(d \).
 - Conditioned on a fixed \(\hat{A} \), Expected leverage score of a random row: \(\frac{d}{\alpha n + 1} \).
 - Total across all rows: \(d \frac{n}{\alpha n + 1} \leq \alpha^{-1}d \).

- Coherence reducing reweighting:
 - Maximum leverage score also referred to as coherence.
 - Can rescale \(O(\alpha^{-1}d) \) rows so that all leverage scores are \(\leq \alpha \).
 - Main idea: whack-a-mole: decrease weights of any row whose leverage score is more than \(\alpha \).
 - Let these rows be \(\overline{A} \).
 - Probabilities of \(\alpha \) dominates leverage scores of \(A + \alpha^{-1} \overline{A} \).
 - Sample results in \(\hat{A} \) s.t. \(A^T A \preceq \hat{A}^T \hat{A} \preceq A^T A^T + \alpha^{-1} \hat{A}^T \overline{A} \).