• **DISCLAIMER:** These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited.

• **Summary**
 - Why concentration bounds?
 - Quick proof of Chernoff bound.
 - The matrix exponential.
 - Proof of matrix Chernoff bound.

• **Matrix Concentration (Theorem 1.1. of http://arxiv.org/pdf/1004.4389.pdf, with $R = 0.1$ and $\mu_{\text{min}} = \mu_{\text{max}} = \mu = O(\log n)$):**

 Theorem 0.1. Consider a finite sequence $X_1 \ldots X_m$ of independent, random symmetric matrices with dimension n with $0 \preceq X_i \preceq 0.1I$. Let their sum be $X = \sum_i X_i$. Then with high probability $X \approx I$.

• **Where do concentration bounds fit into the bigger picture**
 - Immediate use: sparsification
 * Chernoff bounds: tight up to $\log n \epsilon^{-1}$. Can reverse engineer the ‘right’ sampling probabilities.
 * Full dimensional case: intrinsic dimension.
 * Often in practice: low dimensional data.
 - More sophisticated uses of sparsifiers:
 * Iterative methods: given $A \approx B$, can solve problems in B using problems in A.
 * Proof of iterative methods: potential function reduction.
 * (coincidental / remarkable) similarity between these potentials and ones that we use to prove concentration bounds.

• **Single variate case:**
 - Potential function: $\exp(x)$.
Probability of big: $E \left[\exp(x) \right] / \exp(2\mu)$.

Independence: $E \left[\exp(x) \right] = \prod_{i=1}^{m} E_{x_i} \left[\exp \left(x_i \right) \right]$.

Algebraic manipulation: $E_{x_i} \left[\exp \left(x_i \right) \right] \leq \exp \left(1.5 \ E \left[x_i \right] \right)$.

* Extreme case (via convexity of \exp):
 $x_i = \begin{cases}
 0 & \text{w.p. } 1 - p \\
 0.1 & \text{w.p. } p
 \end{cases}$

 * $E \left[x_i \right] = 0.1p$.
 * $E_{x_i} \left[\exp \left(x_i \right) \right] = (1 - p) + p \exp \left(0.1 \right)$.
 * Plot, or do algebra using $| \exp(p) - 1 - p | \leq 0.2p$ when $p \leq 0.1$.

Combine the product gives w.h.p.:

$$\leq \prod_{i=1}^{m} \exp \left(1.5 \ E \left[x_i \right] \right) / \exp(2\mu) = \exp \left(1.5\mu \right) / \exp(2\mu) = \exp \left(-O \left(\log n \right) \right)$$

** Doing this for matrices: the matrix exponential.

* Exponentiate each eigenvalue: if $X = \sum_i \lambda_i u_i u_i^T$, $\exp \left(X \right) = \sum_i \exp \left(\lambda_i \right) u_i u_i^T$.

 * Potential function: $\text{tr} \left[\exp \left(X \right) \right] = \sum_i \exp \left(\lambda_i \left(X \right) \right) \geq \exp \left(\lambda_{\text{max}} \left(X \right) \right)$.

 * Major difference: $\exp \left(A + B \right) \neq \exp \left(A \right) \exp \left(B \right)$.

** Fix for non-commutivity:

 * Lieb’s inequality: for a fixed matrix H and a random matrix X,
 $$E_X \left[\text{tr} \left[\exp \left(H + X \right) \right] \right] \leq \text{tr} \left[\exp \left(H + \log \left(E_X \left[\exp \left(X \right) \right] \right) \right) \right]$$

 * Repeatedly applying this allows us to move each expectation over X_i inside the matrix exponential:
 $$E_{X_1 \ldots X_k} \left[\text{tr} \left[\exp \left(\sum_{i=1}^{k} X_i \right) \right] \right] \leq \text{tr} \left[\exp \left(\sum_{i=1}^{k} \log \left(E_{X_i} \left[\exp \left(X_i \right) \right] \right) \right) \right]$$

** Finishing off in the Bernoulli case:

 * Let $Y_i = \log \left(E_{X_i} \left[\exp \left(X_i \right) \right] \right)$.
 * $\exp \left(X_i \right)$, I commute, so can work with the scalar case.
 * Matrix version of $E \left[\exp \left(x \right) \right] \leq \exp(1.5 E \left[x \right])$: $Y_i \leq 1.5 E \left[X_i \right]$.
 * Maximum eigenvalue of $\sum_i Y_i$ is most $\lambda_{\text{max}} \left(\sum_i E \left[X_i \right] \right) = 1.5\mu$.
 * $\text{tr} \left[\exp(\sum_i Z_i) \right] \leq n \exp \left(1.5\mu \right)$.
 * Extra n absorbed by $\exp(-\mu)$ again.