
CS 8803RMP, Spring 2019 PROBLEM SET 1 Due Tuesday, Feb. 19

Reading: Principles of Robot Motion Chapter 3 and Appendix E. In addition, you may find it helpful to
consult the suggested readings that are listed in the lecture schedule for the course.

Configuration space: topology, parameterizations

Problems:

1. Determine the configuration space for each of the following.

(a) A mobile robot that can translate and rotate in the plane.

(b) A six-link anthropomorphic arm.

(c) A quadrotor.

(d) A mobile manipulator that comprises a robot base (which can rotate and translate in the plane) and
a six-link anthropomorphic arm.

(e) A simple bipedal robot with two legs and a torso, each leg attached to the torso by one revolute
joint, and each leg containing one revolute knee joint.

2. Construct an atlas for SO(2) consisting of two charts. You must show that the two charts satisfy the
conditions required for an atlas.

3. Consider the ZYX Euler angles α, β, γ such that R = Rz,αRy,βRx,γ and R ∈ SO(3). Show that these
Euler angles cannot be used to construct a global chart for SO(3).
As a bonus: What is the relationship between these Euler angles and roll, pitch and yaw angles?

4. The two dimensional torus T 2 embedded in <3 can be defined by

f : <2 → <3, f(θ1, θ2) = ((R+ r cos θ1) cos θ2, (R+ r cos θ1) sin θ2, r sin θ1)

in which R is called the major radius and r is the minor radius. Since f is not a bijection, it cannot be
used to define a single global chart on T 2. However, it is easy to define a charts on the torus by usingf
and restricting its domain. For example, let

V1 = {(θ1, θ2) ∈ <2 | 0 < θ1 < 2π, 0 < θ2 < 2π}
V2 = {(θ1, θ2) ∈ <2 | 0 < θ1 < 2π, −π < θ2 < π}

and let Ui denote the image of Vi under f , i.e.,

f(Vi) = {(x, y, z) ∈ <3 | (θi, θj) ∈ Vi, f(θ1, θ2) = (x, y, z)} = Ui ⊂ T 2

Then we can define the charts (Ui, φi), with φi : Ui → Vi defined by φi = f−1(x, y, z).

(a) Sketch the sets U1 and U2 (draw two separate tori).

(b) Show that the charts (U1, φ1) and (U2, φ2) are C∞ related.

(c) Construct an atlas for T 2 using (U1, φ1) and (U2, φ2), and defining as many additional (Ui, φi) as
necessary. You do not need to show that the collection of charts is C∞ related; you
demonstrated your ability to do so in Part b.



5. The torus T 2 can also be defined by the constraint
(
R−

√
x2 + y2

)2
+ z2 − r2 = 0, i.e.,

T 2 = {(x, y, z) ∈ <3 |
(
R−

√
x2 + y2

)2
+ z2 − r2 = 0}

Use the implicit function to show that the torus is a manifold of dimension 2. Note: you will need to apply
the implicit theorem more than once.

6. For a unit quaternion Q, let R(Q) denote the corresponding rotation matrix (see eqn. E.28 of the text).

(a) For v = (v1, v2, v3) , show that v′ = R(Q)v is given by (0, v′) = Q(0, v)Q∗. There are several possible
solutions; the most straightforward is to work out the Quaternion product, and show that the result
is equal to the product R(Q)v. Some hints: The vector triple product and the scalar triple product
might be useful. The vector cross product operation is neither commutative nor associative.

(b) For unit quaternions Q1 and Q2, show that the composite rotation is given by Q = Q1Q2, i.e.,
show that R(Q) = R(Q1)R(Q2) for Q = Q1Q2. Hint: You should not need eqn. E.28 for this
demonstration.

(c) For unit quaternions Q1 and Q2, show that (Q1Q2)
∗ = Q∗2Q

∗
1

(d) Show that RT (Q) = R(Q∗).

7. Let Q denote the set of unit quaternions.

(a) Show that Q is a 3-manifold.

(b) Show that there does not exist a global diffeomorphism φ between Q and SO(3), i.e., show that there
does not exist φ : Q → SO(3), such that φ is a C∞ bijection.

(c) Construct a chart for Q. Since no global chart exists, you must specify both an open set U ⊂ Q, and
a mapping φ. You are not required here to construct a full atlas.

8. Many path planning methods require the ability to compute a path in configuration space that connects
two distinct configurations. This can be accomplished by interpolating between the two configurations.
Here, we consider the problem of interpolating between orientations for several different parameterizations
of SO(3) by defining a continuous function g, such that g(0) is the initial orientation and g(1) is the final
orientation.

(a) Define a continuous function g : [0, 1] → SO(3) such that g(0) = I and g(1) = R, for a given
R ∈ SO(3). It may be tempting to use a simple linear interpolation of the form g(t) = I + t(R− I).
Although this choice of g satisfies the boundary conditions, it is easy to show that g(t) /∈ SO(3) for
general t ∈ (0, 1). Find an appropriate g. (Hint, think of axis-angle parameterization).

(b) Define a continuous function g : [0, 1] → SO(3) such that g(0) = R1 and g(1) = R2, for given
R1, R2 ∈ SO(3).

(c) For ZYX Euler angles α, β, γ such that R = Rz,αRy,βRx,γ , define a continuous function g : [0, 1]→
SO(3) such that g(0) = I and g(1) = R, for a given α, β, γ.

(d) Define a continuous function g : [0, 1]→ Q such that g(0) = (1, 0, 0, 0) and g(1) = Q = (q0, q1, q2, q3),
for a given Q ∈ Q.
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