Learning Objectives

- Learn different statistical data graphs
 - Line graph, Bar Graph, Scatterplot, Trellis, Crosstab, Stacked bars, Dotplot, Radar graph, Box plot, Pareto chart, Bump chart, Histogram, Frequency plot, Strip plot, Steam-and-leaf plot, Heatmap
- Learn type of data and analytic goal each technique best applies to
- Develop skill at choosing graph(s) to display different types of data and data sets
- Learn approaches to address overplotting
- Understand concept of “banking to 45°”
- Just get better at applying and using the standard charts
Sources Used

Few’s Selection & Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects
 - Determine the range of the quantitative scale
 - If a legend is required, determine where to place it
 - Determine the best location for the quantitative scale
 - Determine if grid lines are required
 - Determine what descriptive text is needed
- Determine if particular data should be featured and how

S Few
“Effectively Communicating Numbers”
http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Some examples...
Let's See Some Examples

Vertical vs. Horizontal Bars

- Horizontal can be good if long labels or many items
Multiple Bars

- Can be used to encode another variable

Upcoming Examples

- Page references are from *Now You See It*
Add Reference Lines

More Reference Lines
Trellis Display

Typically varies on one variable
Distribute different values of that variable across views

Crosstab

Varies across more than one variable
Crosstab

Overplotting

Too many data points

p. 103

p. 118
Overplotting Solutions

- Reducing size of data objects
- Removing all fill color from data objects
- Changing the shape of data objects
- Jittering data objects
- Making data objects transparent
- Encoding the density of values
- Reducing the number of values
 - Aggregating the data
 - Filtering the data
 - Breaking the data into a series of separate graphs
 - Statistically sampling the data

Time Series Data

- Patterns to be shown
 - Trend
 - Variability
 - Rate of change
 - Co-variation
 - Cycles
 - Exceptions
Time Series Visualizations

• Effective visualization techniques include...

Line Graphs

When to use:
When quantitative values change during a continuous period of time

p. 151
Bar Graphs

When to use:
When you want to support the comparison of individual values

Dot Plots

When to use:
When analyzing values that are spaced at irregular intervals of time
Radar Graphs

When to use:
When you want to represent data across the cyclical nature of time

p. 154

Heatmaps

When to use:
When you want to display a large quantity of cyclical data (too much for radar)

p. 157
Box Plots

When to use:
You want to show how values are distributed across a range and how that distribution changes over time p. 157

Fall 2017 CS 4460 23

Animated Scatterplots

When to use:
To compare how two quantitative variables change over time p. 159

Fall 2017 CS 4460 24
Banking to 45°

Same diagram, just drawn at different aspect ratios

People interpret the diagrams better when lines are around 45°, not too flat, not too steep

Question

Which is increasing at a faster rate, hardware sales or software sales?

Log scale shows this

Both at same rate, 10%
A Story

How much wine of different varieties is produced?

Stacked Bars

https://priceonomics.com/ranking-the-most-and-least-diverse-colleges-in/
Pareto Chart

Shows individual contributors and increasing total

80/20 rule –
80% of effect comes from 20%

Bump Chart

Shows how ranking relationships change over time
Deviation Analysis

Do you show the two values in question or the difference of the two?

Distribution Analysis Views

- Histogram
- Frequency polygon
- Strip plot
- Stem-and-leaf plot
Histogram

Frequency Plot
Strip Plot

Stem-and-leaf Plot
Comparisons

Note how first one’s curve is smooth (not such a noticeable difference). Second one is more noticeable. Same data.

p. 234

Correlation Analysis

Bleah. How can we clean this up?

p. 276
Color Choice in Heatmaps

Argues that black should not be used as a middle value because of its saliency (visual prominence)

Some people are red-green color blind too
Fun Examples

Side Dishes of America’s Regions
Most disproportionately common Thanksgiving side dish by region

From QlikView
Critique It

Learning Objectives

- Learn different statistical data graphs
 - Line graph, Bar Graph, Scatterplot, Trellis, Crosstab, Stacked bars, Dotplot, Radar graph, Box plot, Pareto chart, Bump chart, Histogram, Frequency plot, Strip plot, Steam-and-leaf plot, Heatmap
- Learn type of data and analytic goal each technique best applies to
- Develop skill at choosing graph(s) to display different types of data and data sets
- Learn approaches to address overplotting
- Understand concept of “banking to 45°”
- Just get better at applying and using the standard charts
HW 1

• Questions?

• Remember to bring two hardcopies on Friday

Friday

• First lab of term
 – Prep: Read Murray 1st half chapter 3
 – Bring your laptop
 – Install the following on your laptop
 sublime (or some other code editor/IDE)
 Chrome (or some other browser)
 python (if Mac or Linux, already there)
 – git clone or download starter code
Upcoming

- **Lab 1** – HTML, CSS, DOM
 - Prep: Murray, chapter 3 up to Javascript

- **No Class** – Labor Day