Evaluation

Area Focus

- Most of the research in InfoVis that we’ve learned about this semester has been the introduction of a new visualization technique or tool
 - Fisheyes, cone trees, hyperbolic displays, tilebars, themescapes, sunburst, jazz, ...
 - “Isn’t my new visualization cool?...”
Reflection

- Creation of new techniques is very important but...
 - It’s also important to know that we’re getting better
 - So, it’s important that we evaluate the visualizations being created

Evaluation – Why?

- Reasons?
Evaluation – Why?

- Want to learn what aspects of visualizations or systems “works”
- Want to ensure that methods are improving
- Want to insure that technique actually helps people and isn’t just “cool”

Evaluation – Measures?

- How does one judge the quality of work in Information Visualization?
Evaluation – Measures?

- Different possible ways
 - Impact on community as a whole, influential ideas
 - Assistance to people in the tasks they care about

Strong View

- Unless a new technique or tool helps people in some kind of problem or task, it doesn’t have any value
Broaden Thinking

• Sometimes the chain of influence can be long and drawn out
 – System X influences System Y influences System Z which is incorporated into a practical tool that is of true value to people

• This is what research is all about (typically)

Evaluation – How?

• What evaluation techniques should we use?
 – (Channel your 3750/6750 knowledge)
Evaluation in HCI

- Takes many different forms
 - Qualitative, quantitative, objective, subjective, controlled experiments, interpretive observations, ...

- So, which ones are best for evaluating InfoVis systems?

Controlled Experiments

- Good for measuring performance or comparing multiple techniques
- What do we measure?
 - Performance, time, errors, ...

- Strengths, weaknesses?
Subjective Assessments

- Find out people’s subjective views on tools
 - Was it enjoyable, confusing, fun, difficult, ...?
- This kind of personal judgment strongly influence use and adoption, sometimes even overcoming performance deficits

Qualitative, Observational Studies

- Watch systems being used (you can learn a lot)
- Is it being used in the way you expected?
- Ecological validity
- Can suggest new designs and improvements
- (Channel 6455 knowledge)
Running Studies

- Beyond our scope here
- You should learn more about this in 6750 or 6455

Evaluating UI vs. InfoVis

- Seems comparable but...
- What are some differences?
Evaluating UI vs. InfoVis

- Usability is not the same as utility, which seems to be a key factor for InfoVis
- Can think of visualizations that are very usable but not useful or helpful
- More difficult to measure success of an infovis because more domain knowledge and situated use is required

Evaluating InfoVis in General

- Very difficult in InfoVis to compare “apples to apples”
 - Hard to compare System A to System B
 - Different tools were built to address different user tasks
- UI can heavily influence utility and value of visualization technique
Plaisant Paper

- Discuss
- Challenges identified?
- Possible next steps?

Examples

- Let’s look at a few example studies that attempt to evaluate different InfoVis systems
- For multiple examples, see journal issue whose focus is Empirical Studies of Information Visualizations
- Also, now see the BELIV workshops
Commercial Tools Eval

• Empirical study of 3 InfoVis tools
 – Eureka, Spotfire, InfoZoom

• Methodology
 – 3 data sets
 – 83 students
 – Within subjects, 30 minutes per tool

More Methodology

• Tasks
 – Very much from the 10 low-level tasks type of questions (specific, not exploratory)

• Measurements
 – Correctness
 – Time
Results

• Time:
 – InfoZoom – 80 seconds
 – Spotfire – 107 seconds
 – Eureka – 110 seconds

• Correctness
 – Spotfire – 75%
 – Eureka – 71%
 – InfoZoom – 68%

Findings

• Interaction Problems
 – Eureka
 Confusion by hidden labels, problems with 3 or more vars., correlation errors
 – InfoZoom
 Correlations errors
 – Spotfire
 Cognitive set-up costs, scatterplot bias
Findings

- Success depends on
 - Properties of visualization
 - Operations that can be performed on visualization
 - Concrete implementation of paradigm
 - Visualization-indep usability problems

- I would have liked even more discussion on how tools assisted with different classes of user tasks

Space-Filling Hierarchy Views

- Compare Treemap and Sunburst with users performing typical file/directory-related tasks
- Evaluate task performance on both correctness and time

Stasko, Catrambone, Guzdial and McDonald
IJHCS ’00
Tools Compared

Hierarchies Used

- Four in total

 Small Hierarchy
 (~500 files)

 Large Hierarchy
 (~3000 files)

- Used sample files and directories from our own systems (better than random)
Methodology

- 60 participants
- Participant only works with a small or large hierarchy in a session
- Training at start to learn tool
- Vary order across participants

SB A, TM B
TM A, SB B
SB B, TM A
TM B, SB A
32 on small hierarchies
28 on large hierarchies

Tasks

- Identification (naming or pointing out) of a file based on size, specifically, the largest and second largest files (Questions 1-2)
- Identification of a directory based on size, specifically, the largest (Q3)
- Location (pointing out) of a file, given the entire path and name (Q4-7)
- Location of a file, given only the file name (Q8-9)
- Identification of the deepest subdirectory (Q10)
- Identification of a directory containing files of a particular type (Q11)
- Identification of a file based on type and size, specifically, the largest file of a particular type (Q12)
- Comparison of two files by size (Q13)
- Location of two duplicated directory structures (Q14)
- Comparison of two directories by size (Q15)
- Comparison of two directories by number of files contained (Q16)
Hypothesis

- Treemap will be better for comparing file sizes
 - Uses more of the area
- Sunburst would be better for searching files and understanding the structure
 - More explicit depiction of structure
- Sunburst would be preferred overall

Small Hierarchy

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 8)</td>
<td>1</td>
<td>9.88 (3.23)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>1</td>
<td>12.88 (1.96)</td>
</tr>
<tr>
<td>TM (n = 8)</td>
<td>2</td>
<td>12.25 (1.75)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>2</td>
<td>12.63 (2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td></td>
<td>11.06 (2.79)</td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td></td>
<td>12.75 (1.91)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 8)</td>
<td>1</td>
<td>11.50 (2.14)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>1</td>
<td>10.38 (1.69)</td>
</tr>
<tr>
<td>TM (n = 8)</td>
<td>2</td>
<td>10.75 (2.77)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>2</td>
<td>11.50 (2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td></td>
<td>11.13 (2.42)</td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td></td>
<td>10.94 (1.88)</td>
</tr>
</tbody>
</table>

Correct task completions (out of 16 possible)
Large Hierarchy

Correct task completions (out of 16 possible)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 7)</td>
<td>1</td>
<td>8.71 (1.60)</td>
<td>TM (n = 7)</td>
<td>1</td>
<td>8.29 (2.14)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.43 (1.27)</td>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.14 (2.67)</td>
</tr>
<tr>
<td>TM (n = 7)</td>
<td>2</td>
<td>11.57 (1.27)</td>
<td>TM (n = 7)</td>
<td>2</td>
<td>10.86 (1.57)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.16)</td>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.90)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td>10.14 (2.03)</td>
<td>TM (collapsed across phase)</td>
<td>9.57 (2.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td>11.21 (1.72)</td>
<td>SB (collapsed across phase)</td>
<td>11.07 (2.27)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance Results

- Ordering effect for Treemap on large hierarchies
 - Participants did better after seeing SB first
- Performance was relatively mixed, trends favored Sunburst, but not clear-cut
 - Oodles of data!
Subjective Preferences

- Subjective preference: SB (51), TM (9), unsure (1)
- People felt that TM was better for size tasks (not borne out by data)
- People felt that SB better for determining which directories inside others
 - Identified it as being better for structure

Strategies

- How a person searched for files etc. mattered
 - Jump out to total view, start looking
 - Go level by level
DQ vs. BH

- **Empirical Study**
 - Use DataMaps, a geographic (US states) data visualization tool
 - Have participants do different tasks with both methods
 - How many states have pop between x and y in 1970?
 - Given 3 states, which has the lowest median income?
 - What’s the relationship between education and income?
 - List states with pops. 0->x and y->z.
 - What kind of a state is Florida?

We saw this earlier in term

Findings

- Brushing histograms better and more highly rated for more complex discovery tasks
 - Attribute correlation, compare, and trend evaluation
- Dynamic queries better for more simple range specification tasks
 - Single range, multiple ranges, multiple criteria
 - Functioned more as auxiliary control for other vizs
More Recently

• What have been the hot topics in the infovis evaluation community the last few years?

Insight

• Isn’t one of the key ideas about InfoVis that it helps generate insights?
• OK, well let’s count/measure insights

• What challenges do you see in this?
Problem Domain

- Microarray experiments: Gain insight into the extremely complex and dynamic functioning of living cells
- Systems-level exploratory analysis of thousands of variables simultaneously
- Big data sets

Insight

- Insight: An individual observation about the data by the participant, a unit of discovery
- Characteristics
 - Observation
 - Time
 - Domain Value
 - Hypotheses
 - Directed vs Unexpected
 - Category
Experiment Design

- **Data: Timeseries, Virus, Lupus**

<table>
<thead>
<tr>
<th>Tool</th>
<th>Visual Representations</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster/Treeview</td>
<td>Heat-map, Clustered heat-map</td>
<td>O+D</td>
</tr>
<tr>
<td>Time-Searcher</td>
<td>Parallel coordinates, line graph</td>
<td>Brushing, O+D, DQ</td>
</tr>
<tr>
<td>HCE</td>
<td>Cluster dendrogram, parallel coordinates, heat-map, scatterplot, histogram</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Spotfire® 7.2</td>
<td>Parallel coordinates, heat-map, scatterplots (2D/3D), histogram, bar/pie chart, tree view, spreadsheet view, Clustered parallel coordinates</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Functional Genomics</td>
<td>Parallel coordinate, heat-map, scatterplots (2D/3D), histogram, bar chart, block view, physical position view, array layout view, pathway view, spreadsheet view, compare gene to gene, Clustered parallel coordinates</td>
<td>Brushing, Zooming</td>
</tr>
</tbody>
</table>

Tools

Spring 2010

CS 4460/7450

43

Spring 2009

CS 4460/7450

44
Results

Workshop focused on this topic

BELIV

Nice locations!
MILC

- Multi-dimensional In-depth Long-term Case Study
- M – observations, interviews, surveys, logging
- I – intense engagement of researchers with domain experts so as to almost become a partner
- L – longitudinal use leading to strategy changes
- C – Detailed reporting about small number of people working on their own problems in their own domain

Shneiderman & Plaisant
BELIV '06

Influences

- Ethnography
 - Preparation
 - Field study
 - Analysis
 - Reporting
Guidelines

- Specify focused research questions & goals
- Identify 3-5 users
- Document current method/tool
- Determine what would constitute professional success
- Establish schedule of observation & interviews
- Instrument tool to record usage
- Provide attractive log book for comments
- Provide training
- Conduct visits & interviews
- Encourage users to continue using best tool for task
- Modify tool as needed
- Document successes and failures

SocialAction

- Evaluation inspired by MILC ideas goals
 - Interview (1 hour)
 - Training (2 hours)
 - Early use (2-4 weeks)
 - Mature use (2-4 weeks)
 - Outcome (1 hour)
Methodology

- Four case studies
 - Senatorial voting patterns
 - Medical research knowledge discovery
 - Hospital trustee networks
 - Group dynamics in terrorist networks
- Named names
 - I like it!
- Tell what they did with system

My Reflections

- Nice paper
- Stark contrast to comparative, controlled experiments
- We likely need more of this in InfoVis
Many Eyes

- Two main evaluation papers written about system
- Studied use of system, visualizations being created, discussions about system, etc.

Paper 1

- Case study of early use
- System uses
 - Visual analytics
 - Sociability
 - Generating personal and collective mirrors
 - Sending a message

Viégas et al
HICSS ’08
Use Characteristics

<table>
<thead>
<tr>
<th>Data Topic/Area</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society</td>
<td>14.0</td>
</tr>
<tr>
<td>Economics</td>
<td>12.7</td>
</tr>
<tr>
<td>Obscured/Anon</td>
<td>12.4</td>
</tr>
<tr>
<td>Art & culture</td>
<td>10.8</td>
</tr>
<tr>
<td>Web & new media</td>
<td>10.3</td>
</tr>
<tr>
<td>Science</td>
<td>10.0</td>
</tr>
<tr>
<td>Test data</td>
<td>9.5</td>
</tr>
<tr>
<td>Politics</td>
<td>7.4</td>
</tr>
<tr>
<td>Technology</td>
<td>6.6</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>46.3</td>
</tr>
<tr>
<td>Question</td>
<td>15.8</td>
</tr>
<tr>
<td>Affirmation</td>
<td>13.7</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>11.6</td>
</tr>
<tr>
<td>Socializing</td>
<td>11.6</td>
</tr>
<tr>
<td>System design</td>
<td>11.6</td>
</tr>
<tr>
<td>Data integrity</td>
<td>9.5</td>
</tr>
<tr>
<td>Testing</td>
<td>4.2</td>
</tr>
<tr>
<td>Tips</td>
<td>4.2</td>
</tr>
<tr>
<td>To do</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Spring 2010 CS 4460/7450

Paper 2

- Interview-based study
- Individual phone interviews with 20 users
 - Lots of quotes in paper
- Bloggers vs. regular users
- Also includes stats from usage logs
 - 3069 users
 - 1472 users who uploaded data
 - 5347 datasets
 - 972 users who created visualizations
 - 3449 visualizations
 - 222 users who commented
 - 1268 comments

Danis et al
CHI '08
Findings

• User motivations
 – Analyzing data
 – Broadening the audience, sharing data

• Lots of collaborative discussion
 – Much off the ManyEyes site

• Concerns about data and other eyes

Summary

• Why do evaluation of InfoVis systems?
 – We need to be sure that new techniques are really better than old ones
 – We need to know the strengths and weaknesses of each tool; know when to use which tool
Challenges

• There are no standard benchmark tests or methodologies to help guide researchers
 – Moreover, there’s simply no one correct way to evaluate

• Defining the tasks is crucial
 – Would be nice to have a good task taxonomy
 – Data sets used might influence results

• What about individual differences?
 – Can you measure abilities (cognitive, visual, etc.) of participants?

Challenges

• Insight is important
 – Great idea, but difficult to measure

• Utility is a real key
 – Usability matters, but some powerful systems may be difficult to learn and use

• Exploration
 – InfoVis most useful in exploratory scenarios when you don’t know what task or goal is
 So how to measure that?!
Upcoming

• Animation
 – Paper
 Heer & Robertson

• No class on Tuesday 27th
• 7450 project presentations on Thurs 29th