Area Focus

• Most of the research in InfoVis that we’ve learned about this semester has been the introduction of a new visualization technique or tool
 – Fisheyes, cone trees, hyperbolic displays, tilebars, themescapes, sunburst, jazz, ...
 – “Isn’t my new visualization cool?...”
Evaluation – Why?

- Reasons?

- Want to learn what aspects of visualizations or systems “works”
- Want to ensure that methods are improving
- Want to insure that technique actually helps people and isn’t just “cool”
- NOT: Because I need that section in my paper to get it accepted ... sigh
Evaluation – How?

• What do we measure?
 – What data do we gather?
 – What metrics do we use?

• What evaluation techniques should we use?

• (Channel your HCI knowledge)

Evaluation in HCI

• Takes many different forms
 – Qualitative, quantitative, objective, subjective, controlled experiments, interpretive observations, ...

• So, which ones are best for evaluating InfoVis systems?
Controlled Experiments

- Good for measuring performance or comparing multiple techniques
- Often quantitative in nature
- What do we measure?
 - Performance, time, errors, ...

- Strengths, weaknesses?

Subjective Assessments

- Often observational with interview
- Learn people’s subjective views on tool
 - Was it enjoyable, confusing, fun, difficult, ...
- This kind of personal judgment strongly influence use and adoption, sometimes even overcoming performance deficits

- Strengths, weaknesses?
Running Studies

- Beyond our scope here
- You should learn more about this in CS 6750 or 6455

Evaluating UI vs. InfoVis

- Seems comparable but...
- What are some differences?
Usability vs. Utility

- Big difference
- Usability is not the same as utility, which seems to be a key factor for InfoVis
- Can think of visualizations that are very usable but not useful or helpful
- More difficult to measure success of an infovis because more domain knowledge and situated use is required

Evaluating InfoVis in General

- Very difficult in InfoVis to compare “apples to apples”
 - Hard to compare System A to System B
 - Different tools were built to address different user tasks
- UI can heavily influence utility and value of visualization technique
Evaluating Research

- How does one judge the quality of work in Information Visualization?

Research Evaluation

- Different possible ways
 - Impact on community as a whole, influential ideas
 - Assistance to people in the tasks they care about
Strong View

- Unless a new technique or tool helps people in some kind of problem or task, it doesn’t have any value

Broaden Thinking

- Sometimes the chain of influence can be long and drawn out
 - System X influences System Y influences System Z which is incorporated into a practical tool that is of true value to people

- This is what research is all about (typically)

OK, what has research community done?
Past Review

- Old journal issue whose special topic focus was Empirical Studies of Information Visualizations

- A bit dated now

BELIV

Workshop focused on this topic
Plaisant ‘04

- Discusses challenges, possible next steps, and gives examples from work at Maryland

Evaluation Challenges

- Matching tools with users, tasks, and real problems
- Improving user testing
 - Looking at the same data from different perspectives, over a long time
 - Answering questions you didn’t know you had
 - Factoring in the chances of discovery and the benefits of awareness
- Addressing universal usability
Possible Next Steps

- Repositories of data and tasks
- Case studies and success stories
- The role of toolkits and development tools

Carpendale ‘08

- Challenges in infovis evaluation
- Choosing an evaluation approach
Evaluation Approaches

- Desirable features
 - Generalizability
 - Precision
 - Realism

Fig. 1. Types of methodologies organized to show relationships to precision, generalizability and realism. (adapted, simplified from McGrath 1995)
Quantitative Methods

- Laboratory experiments & studies
- Traditional empirical scientific experimental approach
- Steps

Quantitative Challenges

- Conclusion Validity
 - Is there a relationship?
- Internal Validity
 - Is the relationship causal?
- Construct Validity
 - Can we generalize to the constructs (ideas) the study is based on?
- External Validity
 - Can we generalize the study results to other people/places/times?
- Ecological Validity
 - Does the experimental situation reflect the type of environment in which the results will be applied?
Qualitative Methods

• Types
 – Nested methods
 Experimenter observation, think-aloud protocol, collecting participant opinions
 – Inspection evaluation methods
 Heuristics to judge

• Observational context
 – In situ, laboratory, participatory
 – Contextual interviews important

Qualitative Challenges

• Sample sizes
• Subjectivity
• Analyzing qualitative data
Lam, et al ‘12

- Meta-review: analysis of 850 infovis papers (361 with evaluation)
- Focus on evaluation scenarios

Evaluation Taxonomies

<table>
<thead>
<tr>
<th>Type</th>
<th>Categories</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation goals</td>
<td>Formative (to summarize the effectiveness of an interface), formative (to inform design)</td>
<td></td>
</tr>
<tr>
<td>Evaluation goals</td>
<td>Predictive (e.g., to compare design alternatives and compute usability metrics), observational (e.g., to understand user behaviour and performance)</td>
<td></td>
</tr>
<tr>
<td>Focus on evaluation scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation challenges</td>
<td>Quantitative (e.g., types validity: conclusion (types I & II errors), construct, internal/external, ecological); qualitative (e.g., subjectivity, sample size, analysis approaches)</td>
<td></td>
</tr>
<tr>
<td>Evaluation challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research strategies</td>
<td>Anx (generalizability, precision, realism, memorability) and research strategies (field, experimental, respondent, theoretical)</td>
<td></td>
</tr>
<tr>
<td>Research methods</td>
<td>Case (e.g., testing, inspection); type (e.g., log file analysis, guideline review); assumption type (e.g., norm, axioms), other level (e.g., minimal effort, model development)</td>
<td></td>
</tr>
<tr>
<td>Design stages</td>
<td>Nielsen Process Model with four stages (domain problem characterization, design/development abstraction, encoding/interaction technique design, algorithm design), each with potential threats to validity and methods of validation</td>
<td></td>
</tr>
<tr>
<td>Design stages</td>
<td>Design/development cycle stage associated with evaluation goals ("exploratory" with "before design", "predictive" with "before implementation", "formative" with "during implementation", and "summative" with "after implementation"). Methods are further classified as inspection (by usability specialists) or testing (by test users)</td>
<td></td>
</tr>
<tr>
<td>Design stages</td>
<td>Planning & feasibility (e.g., usability testing, requirements (e.g., user surveys), design (e.g., heuristic evaluation, implementation (e.g., style guides), test & measure (e.g., diagnostic evaluation), and post release (e.g., remote evaluation)</td>
<td></td>
</tr>
<tr>
<td>Design stages</td>
<td>Concept design, detailed design, implementation, analysis</td>
<td></td>
</tr>
<tr>
<td>Data and methods</td>
<td>Data collected qualitative, quantitative, collection method (empirical, analytical)</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Data collected qualitative, quantitative, mixed methods</td>
<td></td>
</tr>
<tr>
<td>Evaluation scope</td>
<td>Work environment, system, components</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Scenarios

• Understanding data analysis
 – Understanding environments and work practices (UWP)
 – Evaluating visual data analysis and reasoning (VDAR)
 – Evaluating communication through visualization (CTV)
 – Evaluating collaborative data analysis (CDA)

Evaluation Scenarios

• Understanding visualizations
 – Evaluating user performance (UP)
 – Evaluating user experience (UE)
 – Evaluating visualization algorithms (VA)
Methods

• Coded each paper with tags

<table>
<thead>
<tr>
<th>Paper Tags</th>
<th>EU</th>
<th>Vis</th>
<th>IVS</th>
<th>VAST</th>
<th>Total</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. People’s workflow, work practices</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>UWP</td>
</tr>
<tr>
<td>2. Data analysis</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>VDAI</td>
</tr>
<tr>
<td>3. Decision making</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>VDAI</td>
</tr>
<tr>
<td>4. Knowledge management</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>VDAI</td>
</tr>
<tr>
<td>5. Knowledge discovery</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>VDAI</td>
</tr>
<tr>
<td>6. Communication, learning, teaching, publishing</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>CTV</td>
</tr>
<tr>
<td>7. Casual information acquisition</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>CTV</td>
</tr>
<tr>
<td>8. Collaboration</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>CDA</td>
</tr>
</tbody>
</table>

Visualization

<table>
<thead>
<tr>
<th>Process</th>
<th>EU</th>
<th>Vis</th>
<th>IVS</th>
<th>VAST</th>
<th>Total</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Visualization-analytical operation</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>UP</td>
</tr>
<tr>
<td>10. Perception and cognition</td>
<td>17</td>
<td>24</td>
<td>15</td>
<td>3</td>
<td>62</td>
<td>UP</td>
</tr>
<tr>
<td>11. Usability/effectiveness</td>
<td>25</td>
<td>84</td>
<td>31</td>
<td>18</td>
<td>158</td>
<td>UP/UE</td>
</tr>
<tr>
<td>12. Potential usage</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>22</td>
<td>UE</td>
</tr>
<tr>
<td>13. Adoption</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>UE</td>
</tr>
<tr>
<td>14. Algorithm performance</td>
<td>17</td>
<td>37</td>
<td>15</td>
<td>0</td>
<td>69</td>
<td>VA</td>
</tr>
<tr>
<td>15. Algorithm quality</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>28</td>
<td>VA</td>
</tr>
</tbody>
</table>

Not included in scenarios

<table>
<thead>
<tr>
<th>Process</th>
<th>EU</th>
<th>Vis</th>
<th>IVS</th>
<th>VAST</th>
<th>Total</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Proposed evaluation methodologies</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>17. Evaluation metric development</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Methods

• For each category the authors describe
 – Goals and outputs
 – Evaluation questions
 – Methods and examples
Example

- UWP - Understanding Environments and Work Practices
 - Elicit formal requirements for design
 - Study people for which a tool is being designed and the context of use
 - Very few infovis papers on this topic

UWP 1

- Goals and Outputs
 - Goals: Understand the work, analysis, or info processing practices by a given group of people with or without software in use
 - Outputs: Design implications based on a more holistic understanding of current workflows and work practices, the conditions of the working environment, and potentially current tools in use
UWP 2

- Evaluation questions
 - What is the context of use of visualizations?
 - In which daily activities should the visualization tool be integrated?
 - What types of analyses should the visualization tool support?
 - What are the characteristics of the identified user group and work environments?
 - What data is currently used and what tasks are performed on it?
 - What kinds of visualizations are currently in use? How do they help to solve current tasks?
 - What challenges and usage barriers can we see for a visualization tool?

UWP 3

- Methods and Examples
 - Field observation
 - Interviews
 - Laboratory observation

 (with example projects cited)
Examples

• Let’s examine a few example studies utilizing different goals and styles

Which Technique is Best?

• Space-filling hierarchical views
• Compare Treemap and Sunburst with users performing typical file/directory-related tasks
• Evaluate task performance on both correctness and time

Stasko et al
IJHCS ’00
Tools Compared

- Treemap
- SunBurst

Hierarchies Used

- Four in total
- Used sample files and directories from our own systems (better than random)
Methodology

- 60 participants
- Participant only works with a small or large hierarchy in a session
- Training at start to learn tool
- Vary order across participants

| SB A, TM B | 32 on small hierarchies |
| TM A, SB B | 28 on large hierarchies |
| SB B, TM A |
| TM B, SB A |

Tasks

- Identification (naming or pointing out) of a file based on size, specifically, the largest and second largest files (Questions 1-2)
- Identification of a directory based on size, specifically, the largest (Q3)
- Location (pointing out) of a file, given the entire path and name (Q4-7)
- Location of a file, given only the file name (Q8-9)
- Identification of the deepest subdirectory (Q10)
- Identification of a directory containing files of a particular type (Q11)
- Identification of a file based on type and size, specifically, the largest file of a particular type (Q12)
- Comparison of two files by size (Q13)
- Location of two duplicated directory structures (Q14)
- Comparison of two directories by size (Q15)
- Comparison of two directories by number of files contained (Q16)
Hypothesis

- Treemap will be better for comparing file sizes
 - Uses more of the area
- Sunburst would be better for searching files and understanding the structure
 - More explicit depiction of structure
- Sunburst would be preferred overall

Small Hierarchy

<table>
<thead>
<tr>
<th>Hierarchy A</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 8)</td>
<td>1</td>
<td>9.88</td>
<td>(3.23)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>1</td>
<td>12.88</td>
<td>(1.96)</td>
</tr>
<tr>
<td>TM (n = 8)</td>
<td>2</td>
<td>12.25</td>
<td>(1.75)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>2</td>
<td>12.63</td>
<td>(2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td>11.06</td>
<td>(2.79)</td>
<td></td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td>12.75</td>
<td>(1.91)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hierarchy B</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 8)</td>
<td>1</td>
<td>11.50</td>
<td>(2.14)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>1</td>
<td>10.38</td>
<td>(1.69)</td>
</tr>
<tr>
<td>TM (n = 8)</td>
<td>2</td>
<td>10.75</td>
<td>(2.77)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>2</td>
<td>11.50</td>
<td>(2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td>11.13</td>
<td>(2.42)</td>
<td></td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td>10.94</td>
<td>(1.88)</td>
<td></td>
</tr>
</tbody>
</table>

Correct task completions (out of 16 possible)
Large Hierarchy

Performance Results

- Ordering effect for Treemap on large hierarchies
 - Participants did better after seeing SB first
- Performance was relatively mixed, trends favored Sunburst, but not clear-cut
 - Oodles of data!

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 7)</td>
<td>1</td>
<td>8.71 (1.60)</td>
<td>TM (n = 7)</td>
<td>1</td>
<td>8.29 (2.14)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.43 (1.27)</td>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.14 (2.67)</td>
</tr>
<tr>
<td>TM (n = 7)</td>
<td>2</td>
<td>11.57 (1.27)</td>
<td>TM (n = 7)</td>
<td>2</td>
<td>10.86 (1.57)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.16)</td>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td>10.14 (2.03)</td>
<td>TM (collapsed across phase)</td>
<td>9.57 (2.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td>11.21 (1.72)</td>
<td>SB (collapsed across phase)</td>
<td>11.07 (2.27)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subjective Preferences

- Subjective preference: SB (51), TM (9), unsure (1)
- People felt that TM was better for size tasks (not borne out by data)
- People felt that SB better for determining which directories inside others
 - Identified it as being better for structure

Strategies

- How a person searched for files etc. mattered
 - Jump out to total view, start looking
 - Go level by level
DQ vs. BH

• Empirical Study
 – Use DataMaps, a geographic (US states) data visualization tool
 – Have participants do different tasks with both methods
 How many states have pop between x and y in 1970?
 Given 3 states, which has the lowest median income?
 What’s the relationship between education and income?
 List states with pops. 0->x and y->z.
 What kind of a state is Florida?

We saw this earlier in term
Li & North
InfoVis ’03

Findings

• Brushing histograms better and more highly rated for more complex discovery tasks
 – Attribute correlation, compare, and trend evaluation
• Dynamic queries better for more simple range specification tasks
 – Single range, multiple ranges, multiple criteria
 Functioned more as auxiliary control for other vizi
Animation Helpful?

- Examine whether animated bubble charts (a la Rosling and GapMinder) are beneficial for analysis and presentation
- Run an experiment to evaluate the effects of animation

Visualizations Studied

- Animation
- Small multiples
- Traces

Robertson et al. *TVCG (InfoVis)* '08
Experiment Design

- 3 (animation types) x 2 (data size: small & large) x 2 (presentation vs. analysis)
 - Presentation vs analysis – between subjects
 - Others – within subjects

- Animation has 10-second default time, but user could control time slider

Experiment Design

- Data
 - UN data about countries

- Tasks
 - 24 tasks, 1-3 requires answers per
 Select 3 countries whose rate of energy consumption was faster than their rate of GDP per capita growth
 Select 2 countries with significant decreases in energy consumption
 Which continent had the least changes in GDP per capita
Conditions

- Analysis – straightforward, interactive
- Presentation
 - 6 participants at a time
 - Presenter described a trend relevant to task, but different
 - No interaction with system
 In animation condition, participants saw last frame of animation (no interaction)

Results

- Accuracy
 Measured as percentage correct
 65% overall (pretty tough)

Significant:
SM better than animation
Small data size more accurate than large
Results

• Speed
 – Presentation
 Animation faster than small multiples & traces
 15.8 secs vs. 25.3 secs vs. 27.8 secs.
 – Analysis
 Animation slower than small multiples & traces
 83.1 secs. vs. 45.69 secs. vs. 55.0 secs.

Results

Subjective

Table 3. Average ratings for seven questions for each visualization.
* indicates significant differences (p < .05)

<table>
<thead>
<tr>
<th>Question</th>
<th>Animation</th>
<th>SM</th>
<th>Traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1. The visualization was helpful in answering the questions.</td>
<td>4.5 *Traces</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Q2. For the smaller dataset, I found the tool easy using this visualization.</td>
<td>4.5 *SM *Traces</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Q3. For the larger dataset, I found the tool easy using this visualization.</td>
<td>2.6 *Traces</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Q4. I enjoyed using this visualization.</td>
<td>4.3 *SM *Traces</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Q5. I found this visualization exciting</td>
<td>4.3 *SM *Traces</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Q6. For the smaller dataset, I found the screen too cluttered.</td>
<td>1.8</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Q7. For the larger dataset, I found the screen too cluttered.</td>
<td>4.4</td>
<td>2.8 *Animation *SM *Traces</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Likert: 0—strongly disagree, 6—strongly agree

Table 4. Average ratings for a few general questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Presentation</th>
<th>Analysis</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1. I found the Tool view enjoyable.</td>
<td>3.8</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>G3. I found the Small Multiples view enjoyable.</td>
<td>4.1</td>
<td>3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>G5. I found the Animation view enjoyable.</td>
<td>4.6</td>
<td>3.0</td>
<td>4.8</td>
</tr>
<tr>
<td>G7. The animation went too fast for me</td>
<td>3.2</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>G8. The animation went too slow for me</td>
<td>2.9</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>G6. I lost track of some data points as they moved</td>
<td>4.9</td>
<td>4.6</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Fall 2013 CS 7450 59

Fall 2013 CS 7450 60
Results

G13: Which visualization did you PREFER for the small dataset?
G14: For the large?

Presentation, small: Animation (9) > SM (6) > Traces (3)
Presentation, large: Traces (8) > SM (6) > Animation (4)
Analysis, small: Animation (7) > SM (6) > Traces (5)
Analysis, large: Animation (8) > SM (6) > Traces (4)

Discussion

- People rated animation more fun, but small multiples was more effective
- As data grows, accuracy becomes an issue
 - Traces & animation get cluttered
 - Small multiple gets tiny
- Animation:
 - “fun”, “exciting”, “emotionally touching”
 - Confusing, “the dots flew everywhere”
Useful Junk?

- Tufte claimed that graphs loaded with chartjunk are no good
- Is that really so?
- How could you test this?

Comparing

Bateman et al
CHI ’10
Methodology

- Two versions of each chart
- Participant sees one
 - Asked immediate interpretation accuracy questions
 - Asked similar questions again 5 minutes or 2-3 weeks later

Results

- No significant difference in immediate interpretation accuracy, or after 5 minute gap
- After 2-3 week gap, recall of chart topic and details was significantly better for chartjunk graphs
- Participants found the chartjunk graphs more attractive, enjoyed them more, and found them easiest and fastest to remember
Caveats

- Small datasets
- “Normal” charts were really plain
- No interaction
- How about other added interpretations from the flowery visuals?

- Be careful reading too much into this

More Complex Task Eval

- Consider investigative analysis tasks involving sensemaking, awareness, and understanding
- Research questions
 - How do people use systems?
 - What characteristics matter?
 - What should we measure/observe?
- Exploring methods for utility evaluation

Kang et al
VAST ’08 & TVCG ’11
Study Design

- **Task and dataset**
 - 50 simulated intelligence case reports
 - Each a few sentences long
 - 23 were relevant to plot
 - Identify the threat & describe it in 90 minutes

Source: doc017
Date: Oct 22, 2002

Abu H., who was released from custody after the September 11 incidents and whose fingerprints were found in the U-Haul truck rented by Arnold C. [see doc033] holds an Egyptian passport. He is now known to have spent six months in Afghanistan in the summer of 1999.
Study Design - Settings

1: Paper

2: Desktop

3: Entity

4: Jigsaw

Fall 2013
Performance Measures

- Task sheets (like VAST Contest)
 - Three components (relevant people, events, locations)
 - +1 for correct items, -1 for a misidentified items

- Summary narrative
 - Subjective grading from 1 (low) to 7 (high)

- Two external raters
- Normalized, each part equal, mapped to 100-point scale

Results

<table>
<thead>
<tr>
<th></th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Score</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>Performance</td>
<td>Fair</td>
<td>Very good</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>Average Score</td>
<td>49.80</td>
<td>50.19</td>
<td>44.42</td>
<td>79.59</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td># of Queries</td>
<td>44</td>
<td>4</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>First Query</td>
<td>40:49</td>
<td>19:55</td>
<td>2:47</td>
<td>12:41</td>
</tr>
<tr>
<td>Amount of Notes</td>
<td>Many</td>
<td>None</td>
<td>Many</td>
<td>Some</td>
</tr>
<tr>
<td>First Note Taking</td>
<td>0.07</td>
<td>0.05</td>
<td>0.16</td>
<td>1.53</td>
</tr>
<tr>
<td>First Task Sheet</td>
<td>13:20</td>
<td>32.53</td>
<td>70.13</td>
<td>3.25</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Score</td>
<td>22.87</td>
<td>65.00</td>
<td>24.26</td>
<td>87.08</td>
</tr>
<tr>
<td>Performance</td>
<td>Fair</td>
<td>Very good</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>Average Score</td>
<td>50.19</td>
<td>45.12</td>
<td>79.58</td>
<td></td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td># of Queries</td>
<td>50</td>
<td>10</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>First Query</td>
<td>10:00</td>
<td>0:00</td>
<td>12:00</td>
<td>14:00</td>
</tr>
<tr>
<td>Amount of Notes</td>
<td>Many</td>
<td>None</td>
<td>Many</td>
<td>Some</td>
</tr>
<tr>
<td>First Note Taking</td>
<td>0.07</td>
<td>0.05</td>
<td>0.16</td>
<td>1.53</td>
</tr>
<tr>
<td>First Task Sheet</td>
<td>45:20</td>
<td>32:53</td>
<td>70:13</td>
<td>32:53</td>
</tr>
<tr>
<td>Notes</td>
<td>Many</td>
<td>None</td>
<td>Many</td>
<td>Some</td>
</tr>
<tr>
<td>First Task Sheet</td>
<td>45:20</td>
<td>32:53</td>
<td>70:13</td>
<td>32:53</td>
</tr>
</tbody>
</table>

Jigsaw Usage Patterns

- **Main View**
- **Document View**
- **List View**
- **Graph View**
- **Calendar View**
- **Document Cluster View**
- **Timeline View**
- **Task Sheet**
Investigative Strategies

1. Overview, filter and detail (OFD)
2. Build from detail (BFD)
3. Hit the keyword (HTK)
4. Find a clue, follow the trail (FCFT)

P16: “I like this people-first approach. Once I identify key people, then things that are potentially important come up, too. I’m an impatient person and don’t want to read all documents chronologically.”

Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>Performance</td>
<td>Fair</td>
<td>Very</td>
<td>Fair</td>
<td>Exce-</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
Results by Strategy

<table>
<thead>
<tr>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P2</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P3</td>
<td>BFD</td>
<td>OFD</td>
<td>FCFT</td>
</tr>
<tr>
<td>P4</td>
<td>BFD</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P5</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P6</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P7</td>
<td>BFD</td>
<td>HTK</td>
<td>OFD</td>
</tr>
<tr>
<td>P8</td>
<td>BFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P9</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P10</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P11</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P12</td>
<td>BFD</td>
<td>BFD</td>
<td>BFD</td>
</tr>
<tr>
<td>P13</td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P14</td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P15</td>
<td>HTK</td>
<td>FCFT</td>
<td>FCFT</td>
</tr>
<tr>
<td>P16</td>
<td>HTK</td>
<td>HTK</td>
<td>HTK</td>
</tr>
</tbody>
</table>

Strategy Used
- OFD
- OFD
- BFD
- OFD
- OFD
- OFD
- OFD
- OFD
- FCFT
- BFD
- BFD
- HTK
- FCFT
- HTK
- OFD
- FCFT

Performance
- Fair
- Very good
- Excellent
- Very good
- Very good
- Excellent
- Good
- Poor
- Fair
- Excellent
- Good
- Very good
- Excellent
- Very good
- Excellent
- Very good
- Excellent

Documents Viewed
- 50
- 50
- 50
- 50
- 50
- 50
- 50
- 49
- 49
- 50
- 50
- 50
- 23

Fall 2013

CS 7450

Results by Strategy

<table>
<thead>
<tr>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P2</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P3</td>
<td>BFD</td>
<td>OFD</td>
<td>FCFT</td>
</tr>
<tr>
<td>P4</td>
<td>BFD</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P5</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P6</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P7</td>
<td>BFD</td>
<td>HTK</td>
<td>OFD</td>
</tr>
<tr>
<td>P8</td>
<td>BFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P9</td>
<td>OFD</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td>P10</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P11</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>P12</td>
<td>BFD</td>
<td>BFD</td>
<td>BFD</td>
</tr>
<tr>
<td>P13</td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P14</td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
</tr>
<tr>
<td>P15</td>
<td>HTK</td>
<td>FCFT</td>
<td>FCFT</td>
</tr>
<tr>
<td>P16</td>
<td>HTK</td>
<td>HTK</td>
<td>HTK</td>
</tr>
</tbody>
</table>

Strategy Used
- OFD
- OFD
- BFD
- OFD
- OFD
- OFD
- OFD
- OFD
- FCFT
- BFD
- BFD
- HTK
- FCFT
- HTK
- OFD
- FCFT

Performance
- Fair
- Very good
- Excellent
- Very good
- Very good
- Excellent
- Good
- Poor
- Fair
- Excellent
- Good
- Very good
- Excellent
- Very good
- Excellent
- Very good
- Excellent

Documents Viewed
- 50
- 50
- 50
- 50
- 50
- 50
- 50
- 49
- 49
- 50
- 50
- 50
- 23

Fall 2013

CS 7450

Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>P8</td>
<td>P9</td>
<td>P10</td>
</tr>
<tr>
<td></td>
<td>P11</td>
<td>P12</td>
<td>P13</td>
<td>P14</td>
</tr>
<tr>
<td></td>
<td>P15</td>
<td>P16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>BFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>OFD</td>
<td>OFD</td>
<td>FCFT</td>
<td>BFD</td>
</tr>
<tr>
<td></td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
<td>FCFT</td>
</tr>
<tr>
<td></td>
<td>HTK</td>
<td>HTK</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>FCFT</td>
<td>HFK</td>
<td>HTK</td>
<td>FCFT</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
</tr>
</tbody>
</table>

Fall 2013
CS 7450
81

Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>P8</td>
<td>P9</td>
<td>P10</td>
</tr>
<tr>
<td></td>
<td>P11</td>
<td>P12</td>
<td>P13</td>
<td>P14</td>
</tr>
<tr>
<td></td>
<td>P15</td>
<td>P16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>BFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>OFD</td>
<td>OFD</td>
<td>FCFT</td>
<td>BFD</td>
</tr>
<tr>
<td></td>
<td>FCFT</td>
<td>HTK</td>
<td>HTK</td>
<td>FCFT</td>
</tr>
<tr>
<td></td>
<td>HTK</td>
<td>HTK</td>
<td>FCFT</td>
<td>OFD</td>
</tr>
<tr>
<td></td>
<td>FCFT</td>
<td>HFK</td>
<td>HTK</td>
<td>FCFT</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
</tr>
</tbody>
</table>

Fall 2013
CS 7450
82
Tool Design Implications

- Support finding starting points/clues
- Guide the analyst to follow the right trail
- Support different strategies of SM process
- Support smooth transition between SM stages
- Provide a workspace
- Allow flexibility in organizing
- Support to find next steps when dead-end
- Facilitate further exploration

Jigsaw’s Influence

- Supporting different strategies
- Showing connections between entities
- Helping users find the right clue
- Helping users focus on essential information
- Reviewing hypotheses
- Increasing motivation
Evaluation Recommendations

- Compare system usage to traditional methods
- Collect qualitative data, support with quantitative data
- Consider questions to be answered
- Possible metrics
 - Number of documents viewed
 - When note-taking initiated
 - The quantity of representations created
 - Amount of time and effort in organizing
 - Time spent in reading/processing relevant information

How to Evaluate Many Eyes?

- Two main evaluation papers written about system
- Studied use of system, visualizations being created, discussions about system, etc.
Paper 1

- Case study of early use
- System uses
 - Visual analytics
 - Sociability
 - Generating personal and collective mirrors
 - Sending a message

Use Characteristics

<table>
<thead>
<tr>
<th>Data Topic/Area</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society</td>
<td>14.0</td>
</tr>
<tr>
<td>Economics</td>
<td>12.7</td>
</tr>
<tr>
<td>Obscured/Anon</td>
<td>12.4</td>
</tr>
<tr>
<td>Art & culture</td>
<td>10.8</td>
</tr>
<tr>
<td>Web & new media</td>
<td>10.3</td>
</tr>
<tr>
<td>Science</td>
<td>10.0</td>
</tr>
<tr>
<td>Test data</td>
<td>9.5</td>
</tr>
<tr>
<td>Politics</td>
<td>7.4</td>
</tr>
<tr>
<td>Technology</td>
<td>6.6</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>46.3</td>
</tr>
<tr>
<td>Question</td>
<td>15.8</td>
</tr>
<tr>
<td>Affirmation</td>
<td>13.7</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>11.6</td>
</tr>
<tr>
<td>Socializing</td>
<td>11.6</td>
</tr>
<tr>
<td>System design</td>
<td>11.6</td>
</tr>
<tr>
<td>Data integrity</td>
<td>9.5</td>
</tr>
<tr>
<td>Testing</td>
<td>4.2</td>
</tr>
<tr>
<td>Tips</td>
<td>4.2</td>
</tr>
<tr>
<td>To do</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Fall 2013 CS 7450 87
Paper 2

- Interview-based study
- Individual phone interviews with 20 users
 - Lots of quotes in paper
- Bloggers vs. regular users
- Also includes stats from usage logs
 - 3069 users
 - 1472 users who uploaded data
 - 5347 datasets
 - 972 users who created visualizations
 - 3449 visualizations
 - 222 users who commented
 - 1268 comments

Findings

- User motivations
 - Analyzing data
 - Broadening the audience, sharing data
- Lots of collaborative discussion
 - Much off the ManyEyes site
- Concerns about data and other eyes
Specific to Infovis?

- How about evaluation techniques specifically focused on infovis?

Insight

- Isn’t one of the key ideas about InfoVis that it helps generate insights?
- OK, well let’s count/measure insights

- What challenges do you see in this?
Problem Domain

- Microarray experiments: Gain insight into the extremely complex and dynamic functioning of living cells
- Systems-level exploratory analysis of thousands of variables simultaneously
- Big data sets

Saraiya, North, Duca
TVCG ’05

Insight

- Insight: An individual observation about the data by the participant, a unit of discovery
- Characteristics
 - Observation
 - Time
 - Domain Value
 - Hypotheses
 - Directed vs Unexpected
 - Category
Insight Characteristics

- **Complex**
 - Involving large amounts of data in a synergistic way
- **Deep**
 - Builds over time, generates further questions
- **Qualitative**
 - Can be uncertain and subjective
- **Unexpected**
 - Often unpredictable, serendipitous
- **Relevant**
 - Deeply embedded in data domain, connecting to existing domain knowledge

Experiment Design

Data: Timeseries, Virus, Lupus

<table>
<thead>
<tr>
<th>Tool</th>
<th>Visual Representations</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster/Treeview</td>
<td>Heat-map, Clustered heat-map</td>
<td>O+D</td>
</tr>
<tr>
<td>Time-Searcher</td>
<td>Parallel coordinates, line graph</td>
<td>Brushing, O+D, DQ</td>
</tr>
<tr>
<td>HCE</td>
<td>Cluster dendrogram, parallel coordinates, heat-map, scatterplot, histogram</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Spotfire® 7.2</td>
<td>Parallel coordinates, heat-map, scatterplots (2D/3D), histogram, bar/pie chart, tree view, spreadsheet view, Clustered parallel coordinates</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Functional Genomics</td>
<td>Parallel coordinates, heat-map, scatterplots (2D/3D), histogram, bar chart, block view, physical position view, array layout view, pathway view, spreadsheet view, compare gene to gene, Clustered parallel coordinates</td>
<td>Brushing, Zooming</td>
</tr>
</tbody>
</table>

North CG&A '06
Results
Discussion

- Methodology difficulties
 - Labor intensive
 - Requires domain expert
 - Requires motivated subjects
 - Training and trial time

- Weakness: Short session time (2 hours) when long-term use more desirable

Reconsidering Insight

- Insight with visualization
 - Is not spontaneous “aha!” moments (eg, in cognitive science)
 - Is knowledge-building and model-confirmation
 Like a substance that people acquire with the aid of systems

Chang et al
CG&A '09
Rethinking Methodology

- Do controlled lab experiments really tell us very much in information visualization?

MILC Technique

- Multi-dimensional
 - observations, interviews, surveys, logging
- In-depth
 - intense engagement of researchers with domain experts so as to almost become a partner
- Long-term
 - longitudinal use leading to strategy changes
- Case Study
 - detailed reporting about small number of people working on their own problems in their own domain

Shneiderman & Plaisant
BELIV '06
Influences

• Ethnography
 – Preparation
 – Field study
 – Analysis
 – Reporting

Guidelines

• Specify focused research questions & goals
• Identify 3-5 users
• Document current method/tool
• Determine what would constitute professional success for users
• Establish schedule of observation & interviews
• Instrument tool to record usage data
• Provide attractive log book for comments, problems, and insights
• Provide training
• Conduct visits & interviews
• Encourage users to continue using best tool for task
• Modify tool as needed
• Document successes and failures
SocialAction

- Evaluation inspired by MILC ideas goals
 - Interview (1 hour)
 - Training (2 hours)
 - Early use (2-4 weeks)
 - Mature use (2-4 weeks)
 - Outcome (1 hour)

Methodology

- Four case studies
 - Senatorial voting patterns
 - Medical research knowledge discovery
 - Hospital trustee networks
 - Group dynamics in terrorist networks
- Named names
 - I like it!
- Tell what they did with system
My Reflections

- Nice paper
- Stark contrast to comparative, controlled experiments
- We likely need more of this in InfoVis

Summary

- Why do evaluation of InfoVis systems?
 - We need to be sure that new techniques are really better than old ones
 - We need to know the strengths and weaknesses of each tool; know when to use which tool
Challenges

- There are no standard benchmark tests or methodologies to help guide researchers
 - Moreover, there’s simply no one correct way to evaluate
- Defining the tasks is crucial
 - Would be nice to have a good task taxonomy
 - Data sets used might influence results
- What about individual differences?
 - Can you measure abilities (cognitive, visual, etc.) of participants?

Challenges

- Insight is important
 - Great idea, but difficult to measure
- Utility is a real key
 - Usability matters, but some powerful systems may be difficult to learn and use
- Exploration
 - InfoVis most useful in exploratory scenarios when you don’t know what task or goal is
 - So how to measure that?!
HW 7

- Investigative analysis
- The hidden plot
- Discuss process & your thoughts
- Jigsaw suggestions

Project

- Demos on Thursday
- 15 minutes, plan appropriately, leave open-ended exploration time
 - Sign up on t-square
- Bring page or two describing project including team members

- Video due next Monday
Upcoming

- Review & recap
 - Reading
 Few chapter 13
 Heer et al ‘10