Course Review

CS 7450 - Information Visualization
December 4, 2013
John Stasko

Syllabus Review

Overview

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 19, 21</td>
<td>Introduction</td>
<td>HW 1</td>
</tr>
<tr>
<td>2</td>
<td>Aug 26, 28</td>
<td>Visual perception</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sep 2, 4</td>
<td>No Class – Labor Day</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sep 9, 11</td>
<td>Pew’s design guidance</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sep 16, 18</td>
<td>Multivariate visual representations 2</td>
<td>HW 2</td>
</tr>
<tr>
<td>6</td>
<td>Sep 23, 25</td>
<td>InfoVis systems & toolkits</td>
<td>HW 3a, HW 3b</td>
</tr>
<tr>
<td>7</td>
<td>Sep 30, Oct 2</td>
<td>Storytelling</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 7, 9</td>
<td>Poster session</td>
<td>HW 4</td>
</tr>
<tr>
<td>9</td>
<td>Oct 14, 16</td>
<td>No Class - Fall break</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct 21, 23</td>
<td>Graphs and networks 1</td>
<td>HW 5</td>
</tr>
<tr>
<td>11</td>
<td>Oct 28, 30</td>
<td>Hierarchies & trends 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nov 4, 6</td>
<td>Interaction</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nov 11, 13</td>
<td>Text & documents 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 18, 20</td>
<td>Visual analytics 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov 25, 27</td>
<td>Time series data</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dec 2, 4</td>
<td>Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

Fall 2013
CS 7450
Your Reflections

• What were most interesting topics?

• What are key research challenges?

• What should be done in the future?

Research Directions

• Data issues
 – Scale
 – Static versus dynamic
 – Spatial versus nonspatial
 – Nominal versus ordinal
 – Structured versus nonstructured
 – Time
 – Varying quality
Research Directions

• Issues of cognition, perception, & reasoning
 – How do humans solve problems with the aid of visuals?
 – How can we leverage this knowledge to build better tools?
 Understand analytic tasks better
 – How can visualization assist learning?

• Issues of system design
 – How to integrate computational analysis with visualization better
 – Develop powerful new interaction paradigms
 – Make visualizations engaging and easier to use/create (for the masses)
 – Holy Grail: Automatic visualization design
Research Directions

• Issues of evaluation
 – What is the importance of aesthetics?
 – Understand human perceptual and cognitive limitations
 – How to measure the benefits compared to other analysis methods?
 – What quantitative and qualitative measures of usability are important?
 – How do we measure the information content, distortion, and loss in a visualization?
 – What are the trade-offs between long, longitudinal studies and limited tests with more subjects?
 – What mixture of domain knowledge and visualization knowledge is needed to design and develop effective tools?

• Hardware issues
 – Handhelds to display walls
 – GPU benefits
 – New interaction devices
Research Directions

- Issues of applications
 - How to best collaborate with domain experts to help solve their problems?
 - What new domains can be addressed?

Promising Trends

- Built-in best practices
 - Banking to 45°, Tableau
- Integrated support for geo-spatial analysis
 - Learn from cartographers, Google maps
- Integrated support for network analysis
 - Vizster, Social Action, Ploceus
- Integrated support for collaborative analysis
 - Many Eyes, sense.us
Promising Trends

• Custom analytical applications
 – Spotfire, Qlikview

• Illuminating predictive models
 – Risk, uncertainty, opening the black box

• Integrated data mining
 – Friend not foe

• Improved HCI devices
 – Large, multi-touch displays

Visualization Zoo

<table>
<thead>
<tr>
<th>Time series data</th>
<th>Hierarchies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index line chart</td>
<td>Node-link diagrams</td>
</tr>
<tr>
<td>Stacked graph</td>
<td>Cartesian</td>
</tr>
<tr>
<td>Small multiples</td>
<td>Radial (dendogram)</td>
</tr>
<tr>
<td>Horizon graph</td>
<td>Indented tree layout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistical distributions</th>
<th>Adjacency diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem-and-leaf plots</td>
<td>Icicle plot</td>
</tr>
<tr>
<td>Q-Q plots</td>
<td>SunBurst</td>
</tr>
<tr>
<td>Scatter plot matrix</td>
<td>Enclosure diagrams</td>
</tr>
<tr>
<td>Parallel coordinates</td>
<td>Treemap</td>
</tr>
<tr>
<td></td>
<td>Circle packing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maps</th>
<th>Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow map</td>
<td>Force-directed</td>
</tr>
<tr>
<td>Choropleth map</td>
<td>Arc diagram</td>
</tr>
<tr>
<td>Graduated symbol map</td>
<td>Matrix views</td>
</tr>
<tr>
<td>Cartograms</td>
<td>Heer, Bostock & Ogievetsky</td>
</tr>
</tbody>
</table>

CACM ’10

http://queue.acm.org/detail.cfm?id=1805128
Final Exam

• Monday, this room, 2:50pm
• Short answer
 – Explain something
 – Identify something
 – Critique something
 – ...

Final Project

• Demos tomorrow at my lab
 – Be on time, respect the 15 minutes
 – Bring 2 copies of a summary sheet (member names, paragraph overview, image)
• Video due on Tuesday @ 5pm
 – Do a nice job
 – Give me the file (thumbdrive, web, ...)
 – Will put them all on a t-square page
• Questions?
Team Survey

• Include yourself being rated
• 1 (bad) – 5 (good)
• Only I will read these

Grades

• HWs
• Project
• Participation
• Final exam

• Items will be posted in t-square later next week
Course Survey

• Take a few minutes to complete

• Please remember to complete GT one too!
 – Link from homepage of t-square

Potential Projects

• If you’re interested in pursuing research in this area, let me know
 – CiteVis++
 – Sports data vis
 – Emory AIDS project
 – ...

Fall 2013
CS 7450
InfoVis Gospel

• Hopefully, course has increased your awareness of topic and you can become an advocate

• Keep me posted as your use these ideas in your career