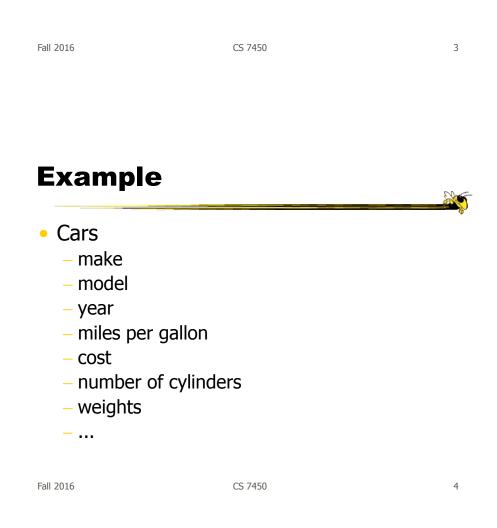
Multivariate Data & Tables and Graphs

CS 7450 - Information Visualization Aug. 29, 2016 John Stasko


Learning Objectives

- Explain different types of data models
- Describe different variable types (categories)
- Define metadata
- Know when to use a table versus a graph
- Identify four fundamental types of symbolic displays
- Explain marks and mark properties
- Identify effective techniques for low-dimensional (<=3) data
- Given raw data, be able to analyze, model, and transform into tabular data

Data

- Data is taken from and/or representing some phenomena from the world
- Data models something of interest to us
- Data comes in many different forms

 Typically, not in the way you want it
- What is available to me (in the raw)?

Example

Fall 2016

CS 7450

Data Models

 Often characterize data through three components

Objects

Items of interest (students, courses, terms, ...)

Attributes

Characteristics or properties of data (name, age, GPA, number, date, ...)

Relations

How two or more objects relate (student takes course, course during term, ...)

CS 7450

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)

Fall 2016

CS 7450

Statistical Model

- Independent and Dependent variables
- Dimensions
 - Discrete, categorical info
- Measures
 - Continuous, quantitative info

CS 7450

8

Data Table Format

		Case ₁	Case ₂	Case ₃
D I M	Variable ₁	Value ₁₁	Value ₂₁	Value ₃₁
e n	Variable ₂			
s i o	Variable ₃	Value ₁₃	Value ₂₃	Value ₃₃
n s				
			-	as a function = <val<sub>11, Val₁₂,></val<sub>

Fall 2016

CS 7450

9

20

Exa	mpl	е				
	Mary	Jim	Sally	Mitch		¢
SSN	145	294	563	823		
Age	23	17	47	29		
Hair	brown	black	blonde	red		
GPA	2.9	3.7	3.4	2.1		
				_		

People in class

	S	6
		· 🚱 🛛

	P1	P2	P3	P4
Name	Mary	Jim	Sally	Mitch
SSN	145	294	563	823
Age	23	17	47	29
Hair	brown	black	Sally 563 47 blonde 3.4	red
GPA	2.9	3.7	3.4	2.1
				People in class

Fall 2016

CS 7450

11

Example

	🛛 🗅 😅 🖬	a 🖓 🦉	ኡ 🖻 🛍 🗧	2 N - O	🗠 😤 🏀	Σfx	1 XI 🛄	2 🛷 1	00% 🔹 🙎	1	
	Arial	■ 10	• B I	<u>u</u> ≡ ≡	= 🖬 🤋	s%,	:0 :00 🗊	律 🔤 •	👌 - 🛕 -		
	A1	•	= Name							_	
	A	В	C	D	E	F	G	Н	1	J	
	1 Name	At Bats		Home Rur	Runs	Rbi	Walks	Years In M	Career At I	Career Hits	Car
aseball	2 STRING	INT	INT	INT	INT	INT		INT			INT
ascuali	3 Andy All		93 6		00	29	14	1	293	66	
	4 Alan Ast		15 8			38	39	14	3449	835	
atistics	5 Alvin Dav		79 13			72	76	3	1624	457	
	6 Andre Da		96 14			78	37	11	5628	1575	
	7 Andres (121 8			42	30	2	396	101	
	8 Alfredo C		94 16			51	35	11	4408	1133	
	9 Al Newm		85 3			8	21	2	214	42	
	10 Argenis		98 7			24	7	3	509	108	
	11 Andres T		23 8			32	8	2	341	86	
	12 Andre Th		01 9			66	65	13	5206	1332	
	13 Alan Tra		74 15			75	59	10	4631	1300	
	14 Alex Tre		02 5			26	27	9	1876	467	
	15 Andy Va		18 11			61 11	47	4	1512 1941	392 510	
	16 Alan Wig 17 Bill Almo		39 6 96 4			27	22	6 13	3231	51U 825	
	18 Billy Bea		96 4 83 3			2/	30	3	201	42	
	19 Buddy B		68 15			75	73	15	8068	2273	
	20 Buddy B		90 4			/5	15	5	479	102	
	21 Bruce B		07 10			43	65	12	5233	1478	
			07 0					12	3233	400	-

Fall 2016

Variable Types

- Three main types of variables
 - N-Nominal (equal or not equal to other values)

Example: gender

- O-Ordinal (obeys < relation, ordered set)
 Example: fr,so,jr,sr
- Q-Quantitative (can do math on them)
 Example: age

Fall 2016

CS 7450

Alternate Characterization

- Two types of data
 - Quantitative
 Relationships between values:
 Ranking
 Ratio
 Correlation
 - Categorical How attributes relate to each other: Nominal Ordinal Interval Hierarchical

From S. Few

Fall 2016

CS 7450

Metadata

- Might be something as simple as the type of a variable, or could be more complex
- For times when the table itself just isn't enough
- Example: if variable1 is "I", then variable3 can only be 3, 7 or 16

Fall 2016

CS 7450

Data Cleaning

- Data may be missing/corrupted
 - Remove?
 - Modify?
- You may want to adjust values
 - Use inverse
 - Map nominal to ordinal/quantitative
 - Normalize values
 Scale between 0 and 1

CS 7450

https://www.trifacta.com/start-wrangling/

CS 7450

Fall 2016

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hypervariate data

CS 7450

Representation

- What are two main ways of presenting multivariate data sets?
 - Directly (textually) \rightarrow Tables
 - Symbolically (pictures) \rightarrow Graphs
- When use which?

Fall 2016	CS 7450	19
Strengths?	S. Few Show Me the Numbers	
 Use tables when The document will be use to look up individual value The document will be use to compare individual values Precise values are required The quantitative info to b communicated involves more than one unit of measure 	es in the shape of the value ed – The document will be us to reveal relationships among values ed	es

Effective Table Design

- See Show Me the Numbers
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)

Fall 2016

CS 7450

21

20

Example

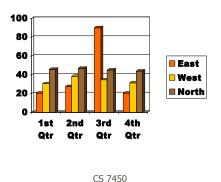
Example

Fall 2016	CS 7450

Basic Symbolic Displays

- Graphs 🗲
- Charts
- Maps
- Diagrams

From: S. Kosslyn, "Understanding charts and graphs", *Applied Cognitive Psychology*, 1989.


CS 7450

20

23

1. Graph

Showing the relationships between variables' values in a data table

Fall 2016

Properties

• Graph

- Visual display that illustrates one or more relationships among entities
- Shorthand way to present information
- Allows a trend, pattern or comparison to be easily comprehended

CS 7450

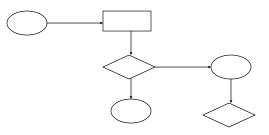
Issues

- Critical to remain task-centric
 - Why do you need a graph?
 - What questions are being answered?
 - What data is needed to answer those questions?
 - Who is the audience?

Fall 2016

Graph Components

- Framework
 - Measurement types, scale
- Content
 - Marks, lines, points
- Labels
 - Title, axes, ticks


Quick Aside

- Other symbolic displays
 - Chart
 - Мар
 - Diagram

Fall 2016	CS 7450

2. Chart

- Structure is important, relates entities to each other
- Primarily uses lines, enclosure, position to link entities

Examples: flowchart, family tree, org chart, ...

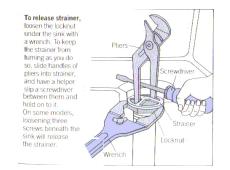
CS 7450

3. Map

2

Representation of spatial relations

Locations identified by labels


Fall 2016

CS 7450

31

4. Diagram

- Schematic picture of object or entity
- Parts are symbolic

Examples: figures, steps in a manual, illustrations,...

Fall 2016

Some History

- Which is older, map or graph?
- Maps from about 2300 BC
- Graphs from 1600's
 - Rene Descartes
 - William Playfair, late 1700's

Fall 2016

Details

• What are the constituent pieces of these four symbolic displays?

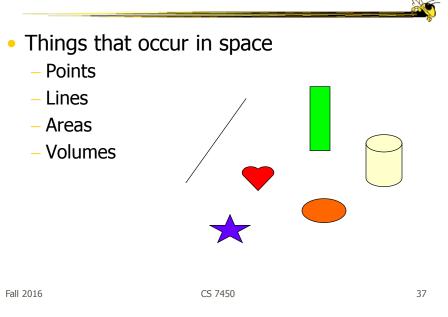
CS 7450

• What are the building blocks?

Visual Structures

- Composed of
 - Spatial substrate
 - Marks
 - Graphical properties of marks

Fall 2016


CS 7450

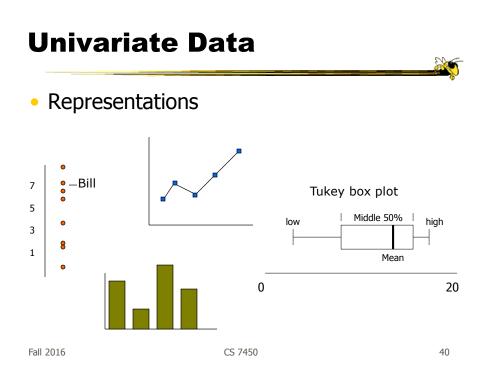
35

Space

- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to
 - 1) increase use of space
 - 2) do data encodings

Marks

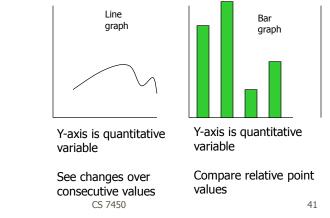
Graphical Properties


• Size, shape, color, orientation...

	Spatial properties	Object properties
Expressing extent	Position Size	Grayscale
Differentiating marks	Orientation	Color Shape Texture

Back to Data

- What were the different types of data sets?
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hypervariate data


Fall 2016	CS 7450	39

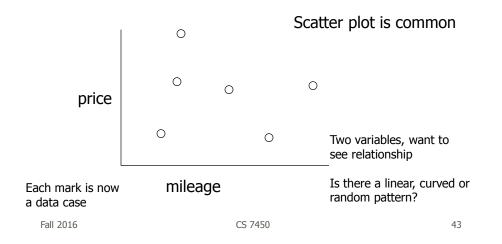
What Goes Where?

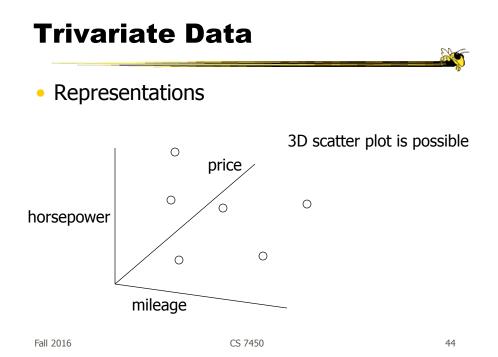
• In univariate representations, we often think of the data case as being shown along one dimension, and the

value in another

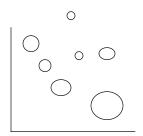
Fall 2016

Alternative View


 We may think of graph as representing independent (data case) and dependent (value) variables

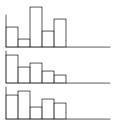

- Guideline:
 - Independent vs. dependent variables
 - Put independent on x-axis

See resultant dependent variables along y-axis


Bivariate Data

Representations

Alternative Representation


Still use 2D but have mark property represent third variable

Fall 2016

CS 7450

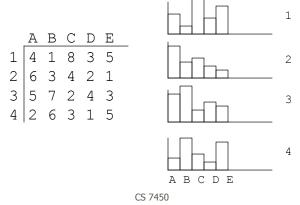
45

Alternative Representation

Represent each variable in its own explicit way

Hypervariate Data

- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?

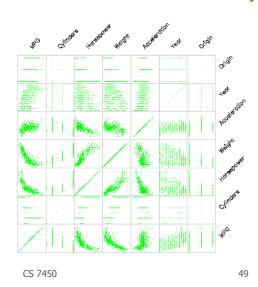

- Often the interesting, challenging ones

Fall 2016

CS 7450

Multiple Views

Give each variable its own display



Fall 2016

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what? Misses what?

Fall 2016

More to Come...

 Subsequent day will explore other general techniques for handling hypervariate data

Advice

Take DB & IR courses

 Learn about query languages, relational data models, datacubes, data warehouses, ...

Fall 2016

CS 7450

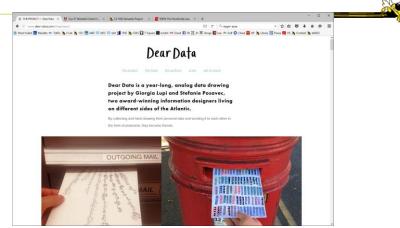
Design Challenge

Data about dogs

Variety	Ν
Group	Ν
Size	0
Smartness	Ν
Popularity	Q
Ranking	Q

Design a representation

CS 7450


http://www.slate.com/blogs/wild_things/2014/11/12/big_data_dog_graph_popularity_of_dog_breeds_mapped_against_their_overall.html

Fall 2016

CS 7450

53

Dear Data

http://www.dear-data.com
http://www.dear-data.com/all

Learning Objectives

- Explain different types of data models
- Describe different variable types (categories)
- Define metadata
- Know when to use a table versus a graph
- Identify four fundamental types of symbolic displays
- Explain marks and mark properties
- Identify effective techniques for low-dimensional (<=3) data
- Given raw data, be able to analyze, model, and transform into tabular data

Fall 2016

CS 7450

55

Administratia

- Office hours posted
- John S.
- John T.
- Ayshwarya

Piazza

- Add yourself
- Feel free to post...

Fall 2016

CS 7450

HW 1 Discussion

- What findings did you make?
- What was difficult?
- What help did you want?

Project

- Overview
 - Examine details on Assignments webpage
- Milestones
 - Teams & topics 2 weeks from Wednesday
- Topic ideas

Fall 2016

CS 7450

Project Teams

- 3-4 people (3 preferred)
- Self-forming or designated
- Students wiki page on t-square
 Add your info by Weds.
- Email me if you want me to pair you
 - Email header: [7450 team]

What are you Listening to?

Represent music listening histories

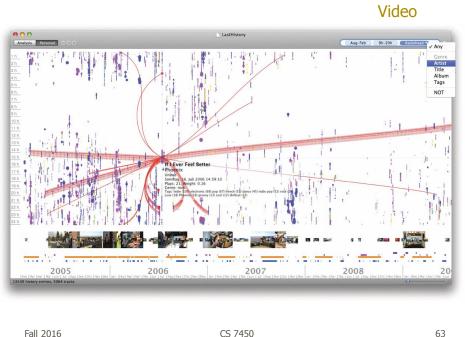
- What would you want to show?
- How might you visualize it?

Nice example of a project

61

Fall 2016

LastHistory


 Visualizing a person's listening history from last.fm

CS 7450

- Want to support
 - Analysis
 - Reminiscing
- Potential to synchronize with photos and calendar entries from that time

Baur et al *TVCG* (InfoVis) `10 62

Fall 2016

Fall 2016

CS 7450

Vis of the Day

- Everyone will find one interesting new visualization
- Explanation on Assignments page
- Details (tumblr, your day) can be found in t-square

Reading

• Dear Data website

Fall 2016

CS 7450

65

Upcoming

- Statistical Charts & Graphs
- No class: Labor Day

Sources Used

Few book CMS book Referenced articles Marti Hearst SIMS 247 lectures Kosslyn '89 article A. Marcus, *Graphic Design for Electronic Documents and User Interfaces* W. Cleveland, *The Elements of Graphing Data*

Fall 2016

CS 7450