Multivariate Visual Representations 1

CS 7450 - Information Visualization

Sep. 14, 2016
John Stasko

Learning Objectives

- For the following visualization techniques/systems, be able to describe each and its visual encoding, know what type of data it's best for, know its strengths and limitations, and understand how to apply it

Iconic representatons (Chernoff faces), Table Lens, InfoZoom, Mosaic plot, Attribute Explorer, Parallel Sets, Star plots, Star coordinates

- Explain the visual encoding and design issues of Parallel Coordinates, as well as their utility and limitations
- Understand how the different types of variables in a multivariate data set influence the visualization technique that should be chosen to represent the data
- Be able to apply any of these techniques to a data set that is an appropriate match for them

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
- 1 - Univariate data

2 - Bivariate data

- 3 - Trivariate data
->3 - Hyper/Multivariate data Focus Today

Earlier

- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
- Bar graph, line graph, pie chart, scatterplot, box plot, trellis display, crosstab, radar graph, heatmap
- Hinted at how to go above 3 dimensions

Hypervariate Data

- How about 4 to 20 or so variables (for instance)?
- Lower-dimensional hypervariate data
- Many data sets fall into this category

Design Challenge

- Data set of 500 cases
- Attributes
- 5 quantitative
- 4 nominal
- 2 ordinal
- Design a visualization

More Dimensions

- Fundamentally, we have 2 geometric (position) display dimensions
- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

Wait a Second

- A spreadsheet already does that
- Each variable is positioned into a column
- Data cases in rows

This is a projection (mapping)

- What about some other techniques?

Already seen a couple

Multiple Views

Give each variable its own display

A	B	C	D	E	
1	4	1	8	3	5
2	6	3	4	2	1
3	5	7	2	4	3
4	2	6	3	1	5
5	3	4	5	1	7

9

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

If pairwise correlation is key

Key Principle (today)

- Handle all data sets generically
- Examine techniques not specific to some data or domain
-Technique can generally handle all data sets

Iconic Representations

- Glyph (graphical object) represents a data case
- Visual properties of glyph represent different variables

Remember?

Chernoff Faces

Encode different variables' values in characteristics of human face

Examples

Cute applet
http://www.cs.uchicago.edu/~wiseman/chernoff/

Table Lens

- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

Visual Mapping

Tricky Part

질 a1-cereals [Read-Only] [Compatibility Mode]									-	- \quad a
4	A	B	C	D	E		F	G	H	$1{ }^{-}$
1	Cereal	Manufa		Calories	Protein	Fat		Sodium	Fiber	Carbol
2	Frosted Mini-Wheats	K	C	100		3	0	0	3	3
3	Raisin Squares	K	C	90		2	0	0	2	2
4	Shredded Wheat	N	C	80		2	0	0		3
5	Shredded Wheat 'n'Bran	N	C	90		3	0	0	4	4
6	Shredded Wheat spoon s		C	90		3	0	0	3	3
7	Puffed Rice	Q	C	50		1	0	0	0	0
8	Puffed Wheat	Q	C	50		2	0	0		1
9	Maypo	A	H	100		4	1	0	0	0
10	Quaker Oatmeal	Q	H	100		5	2	0	2.7	
11	Strawberry Fruit Wheats	N	C	90		2	0	15	3	
12	100\% Natural Bran	Q	c	120		3	5	15	2	2
13	Golden Crisp	P	c	100		2	0	45	0	0
14	Smacks	K	c	110		2	1	70	1	1
15	Great Grains Pecan	P	C	120		3	3	75	3	3
16	Cream of Wheat (Quick)	N	H	100		3	0	80	1	1
17	Corn Pops	K	C	110		1	0	90		1
18	Muesli Raisins, Dates, \&		C	150		4	3	95	3	
10 Annlo larke K				110			n	125		

What do you do for
nominal data?

Instantiation

Details

Focus on item(s) while
showing the context

See It

FOCUS

- Feature-Oriented Catalog User Interface
- Leverages spreadsheet metaphor again
- Items in columns, attributes in rows
- Uses bars and other representations for attribute values

Characteristics

- Can sort on any attribute (row)
- Focus on an attribute value (show only cases having that value) by doubleclicking on it
- Can type in queries on different attributes to limit what is presented too

Manifestation

MultiNav

- Each different attribute is placed in a different row
- Sort the values of each row

Thus, a particular item is not just in one column

- Want to support browsing

Interface

Instantiation

Alternate UI

- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

Attributes as Sliding Rods

Limitations

Number of cases (horizontal space)

- Nominal \& textual attributes don't work quite as well

An Application

- What if you cared about ranking items?

Think of the attributes per item as contributing to some score or value for it

- Apply the representations we've seen earlier

LineUp

Categorical data?

- How about multivariate categorical data?
- Students

Gender: Female, male

- Eye color: Brown, blue, green, hazel
- Hair color: Black, red, brown, blonde, gray
- Home country: USA, China, Italy, India, ...

Mosaic Plot

Fall 2016
CS 7450
35

Mosaic Plot

Women

Men

Mosaic Plot

Fall 2016
CS 7450
37

Mosaic Plot

Attribute Explorer

- General hypervariate data representation combined with flexible interaction

Characteristics

- Multiple histogram views, one per attribute (like trellis)
- Each data case represented by a square
- Square is positioned relative to that case's value on that attribute
- Selecting case in one view lights it up in others
- Query sliders for narrowing
- Use shading to indicate level of query match (darkest for full match)

Features

- Attribute histogram
- All objects on all attribute scales
- Interaction with attributes limits

Features

- Inter-relations between attributes - brushing

Features

- Color-encoded sensitivity

43

Attribute Explorer

Video
http://www.open-video.org/details.php?videoid=8162

Parallel Coordinates

	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2

Parallel Coordinates

Parallel Coordinates

Parallel Coordinates

Parallel Coordinates

Fall 2016

Encode variables along a horizontal row

Vertical line specifies different values that variable can take

Data point represented as a polyline

CS 7450
49

Issue

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

Application

- VLSI chip manufacture
- Want high quality chips (high speed) and a high yield batch (\% of useful chips)
- Able to track defects
- Hypothesis: No defects gives desired chip types
- 473 batches of data

Challenges

Too much data

Out5d dataset (5 dimensions, 16384 data items)

Reducing Density

Johansson et al, '05

Dimensional Reordering

Can you reduce clutter and highlight other interesting features in data by changing order of dimensions?

Penget al InfoVis '04

Dimensional Reordering

Which dimensions are most like each other?

Same dimensions ordered according to similarity

Different Kinds of Data

- How about categorical data?
- Can parallel coordinates handle that well?

Parallel Sets

- Visualization method adopting parallel coordinates layout but uses frequencybased representation
- Visual metaphor
- Layout similar to parallel coordinates

Continuous axes replaced with boxes

- Interaction

User-driven: User can create new classifications

Representation

Star Plots (Radar Chart)

Alternative Rep.

Space out the n variables at equal angles around a circle

Each "spoke" encodes a variable's value

Data point is now a "shape"

Star Coordinates

- Same ideas as star plot
- Rather than represent point as polyline, just accumulate values along a vector parallel to particular axis
- Data case then becomes a point

Star Coordinates

E. Kandogan Late-Breaking Hot Topics, InfoV is ' 00

Star Coordinates

- Data cases with similar values will lead to clusters of points
- (What's the problem though?)
- Multi-dimensional scaling or projection down to 2D

Generalizing the Principles

- General \& flexible framework for axisbased visualizations
Scatterplots, par coords, etc.
- User can position, orient, and stretch axes
- Axes can be linked

FLINA View
 Europe: gray.

(d) Hyperbox

(e) Time Wheel

(f) Many-to-many PCP

Learning Objectives

- For the following visualization techniques/systems, be able to describe each and its visual encoding, know what type of data it's best for, know its strengths and limitations, and understand how to apply it

Iconic representatons (Chernoff faces), Table Lens, InfoZoom, Mosaic plot, Attribute Explorer, Parallel Sets, Star plots, Star coordinates

- Explain the visual encoding and design issues of Parallel Coordinates, as well as their utility and limitations
- Understand how the different types of variables in a multivariate data set influence the visualization technique that should be chosen to represent the data
- Be able to apply any of these techniques to a data set that is an appropriate match for them

Readings

- Inselberg, InfoVis '97 paper
- Browse Heinrich http://www.parallelcoordinates.de website (try out demo)

Reminder

- Processing tutorial session

Thursday 11-12 in GVU Café

- HW 3 due a week from today

Upcoming

- Multivariate Visual Representations 2
- InfoVis Systems \& Toolkits

