Text and Document Visualization 1

CS 7450 - Information Visualization October 31, 2016 John Stasko

Learning Objectives

- Explain key challenges in visualizing a large document or body of text
- Identify and explain different techniques for representing words and concepts in a document
 - Word cloud, Wordle, Parallel tag cloud, SeeSoft, WordTree, PhraseNet, SentenTree, TextArc
- Understand the positives and limitations of word clouds and Wordles
- Describe SeeSoft-style miniature visual representations
- Explain what word concordance is
- Describe how WordTree representation works
- Identify and explain the techniques:
 - Word cloud, Wordle, Parallel tag cloud, SeeSoft, WordTree, PhraseNet, SentenTree, TextArc

Text is Everywhere

- We use documents as primary information artifact in our lives
- Our access to documents has grown tremendously in recent years due to networking infrastructure
 - WWW
 - Digital libraries

_ ...

Fall 2016 CS 7450 3

Big Question

 What can information visualization provide to help users in understanding and gathering information from text and document collections?

Challenge

- Text is nominal data
 - Does not seem to map to geometric/graphical presentation as easily as ordinal and quantitative data
- The "Raw data --> Data Table" mapping now becomes more important

Fall 2016 CS 7450 5

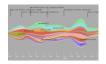
Related Topic - IR

- Information Retrieval
 - Active search process that brings back particular/specific items (will discuss that some today, but not always focus)
 - I think InfoVis and HCI can help some...
- InfoVis, conversely, seems to be most useful when
 - Perhaps not sure precisely what you're looking for
 - More of a browsing task than a search one

This Week's Agenda

<u>Visualization for IR</u> Helping search

Fall 2016



<u>Visualizing text</u> Showing words, phrases, and sentences

Visualizing document sets
Words, entities & sentences
Analysis metrics
Concepts & themes

Next time

CS 7450

7

Information Retrieval

Today

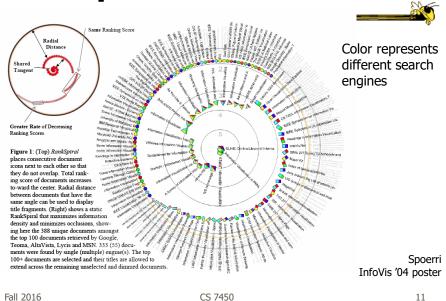
- Can InfoVis help IR?
- Assume there is some active search or query
 - Show results visually
 - Show how query terms relate to results

_

Generalize More

- How about the "holy grail" of a visual search engine?
 - Hot idea for a while
- My personal view: It's a mistake in the general case. Text is just better for this.

Fall 2016 CS 7450


Search Visualization

http://www.kartoo.com **Defunct**

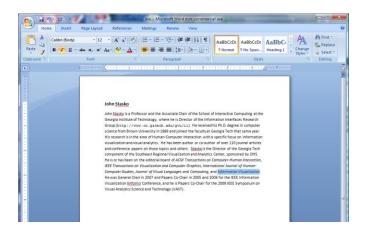
Fall 2016

RankSpiral

To Learn More

6

Transition 1



- OK, let's move up beyond just search/IR
- How do we represent the words, phrases, and sentences in a document or set of documents?
 - Main goal of *understanding* versus search

Fall 2016 CS 7450 13

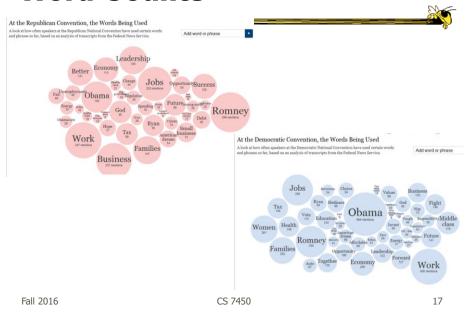
One Text Visualization

Uses: Layout Font Style Color

. . .

Design Challenge

- How would you visualize one of the recent presidential debates?
- Ideas?


Fall 2016 CS 7450 15

Tasks

 What kinds of questions or tasks would someone want to do with such a visualization?

Word Counts

More Word Counting

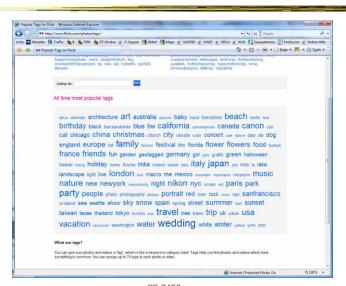
http://www.wordcount.org

Tag/Word Clouds

- Currently very "hot" in research community
- Have proven to be very popular on web
- Idea is to show word/concept importance through visual means
 - Tags: User-specified metadata (descriptors) about something
 - Sometimes generalized to just reflect word frequencies

Fall 2016

19

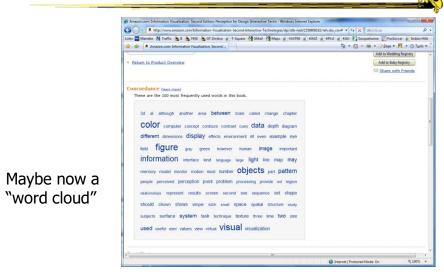

History

- 90-year old Soviet Constructivism
- Milgram's `76 experiment to have people label landmarks in Paris
- Flanagan's '97 "Search referral Zeitgeist"
- Fortune's '01 Money Makes the World Go Round

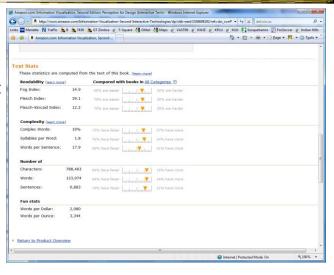
Viégas & Wattenberg interactions '08

Flickr Tag Cloud

Fall 2016 CS 7450 21


delicious Tag Cloud

Alternate Order



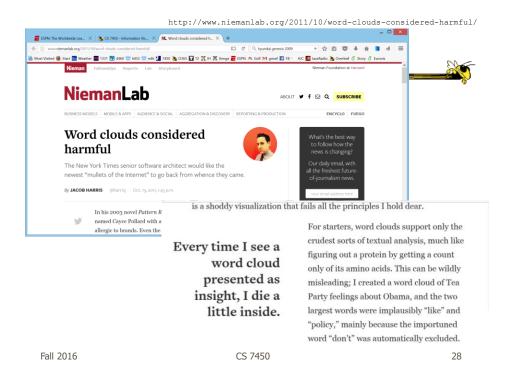
Amazon's (old) Product Concordance

More (old) Info

There are other types of info about a document on Amazon

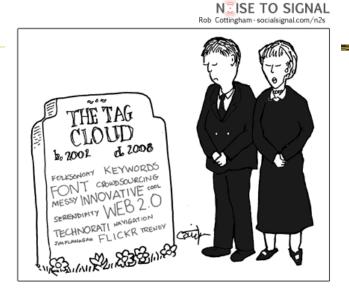
Fall 2016 CS 7450 25

Many Eyes Tag Cloud


Here, pairs of words are shown

Problems

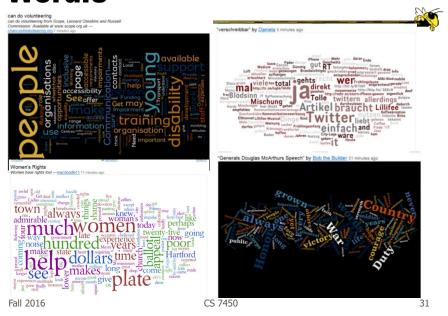
- Actually not a great visualization. Why?
 - Hard to find a particular word
 - Long words get increased visual emphasis
 - Font sizes are hard to compare
 - Alphabetical ordering not ideal for many tasks
- Studies have even shown they underperform Gruen et al CHI '06


Why So Popular?

- Serve as social signifiers that provide a friendly atmosphere that provide a point of entry into a complex site
- Act as individual and group mirrors
- Fun, not business-like

Hearst & Rosner HICSS '08

Fall 2016 CS 7450 29



http://www.socialsignal.com/system/files/images/2008-08-01-tagcloud.gif

http://www.wordle.net

Wordle

Wordle

- Tightly packed words, sometimes vertical or diagonal
- Word size is linearly correlated with frequency (typically square root in cloud)
- Multiple color palettes
- User gets some control

Viegas, Wattenberg, & Feinberg *TVCG* (InfoVis) '09

Layout Algorithm

- Details not published
- Idea:
 - sort words by weight, decreasing order for each word w
 w.position := makeInitialPosition(w); while w intersects other words: updatePosition(w);
 - Init position randomly chosen according to distribution for target shape
 - Update position moves out radially

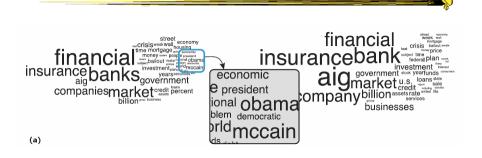
Fall 2016 CS 7450 33

Fun Uses

- Political speeches
- Songs and poems
- Love letters (for "boyfriend points")
- Wedding vows
- Course syllabi
- Teaching writing
- Gifts

2-day Survey in Jan. 09

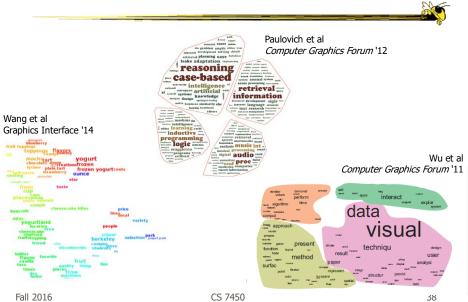
- 2/3 respondents were women
- Interest came from design, visual appeal, beauty
- Why preferred over word clouds:
 - Emotional impact
 - Attention-keeping visuals
 - Organic, non-linear
- Fair percentage didn't know what size signified


Fall 2016 CS 7450 35

SoTU Wordles

http://www.guardian.co.uk/news/datablog/2011/jan/25/state-of-the-union-text-obama#Fall 2016 CS 7450

A Little More Order



Order the words more by frequency

Cui et al IEEE CG&A '10

Fall 2016 CS 7450 37

Semantic/Context Word Clouds

Wordle Characteristics

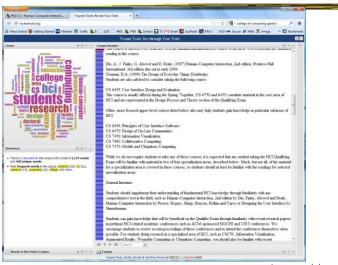
- Layout, words are automatic
- If you had some control, what would you like to change or alter?

Fall 2016 CS 7450 39

Mani-Wordle

- Start with nice default algorithm
- Give user more control over design
 - Alter color (within a palette)
 - Pin words, redo the rest
 - Move and rotate words
 - Smooth animation and collision detection for tracking changes

Koh et al TVCG (InfoVis) '10


Video

Fall 2016 CS 7450 41

Text Analysis on Web

http://voyant-tools.org/

Multiple Documents?

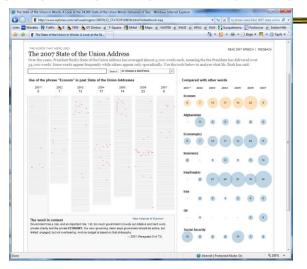
 How to show word frequencies across multiple related documents?

Fall 2016 CS 7450 43

Parallel Tag Clouds

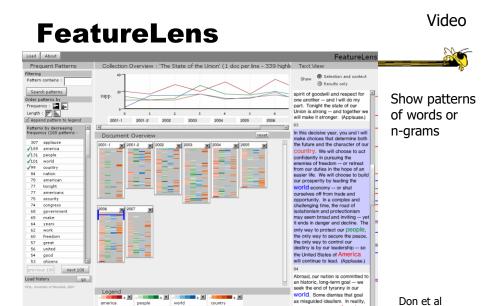
Video

Different circuit courts


Collins et al VAST '09

Analytic Support

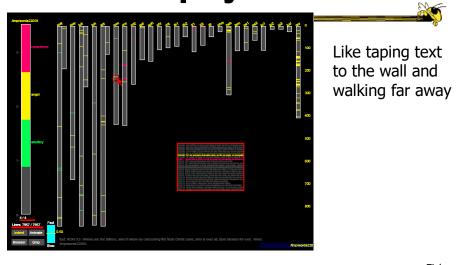
- Note: Word Clouds and Wordles are really more overview-style visualizations
 - Don't really support queries, searches, drilldown
- How might we also support queries and search?


Fall 2016 CS 7450 45

Overview & Timeline

State of the Union Addresses

福 2016 CS 7450



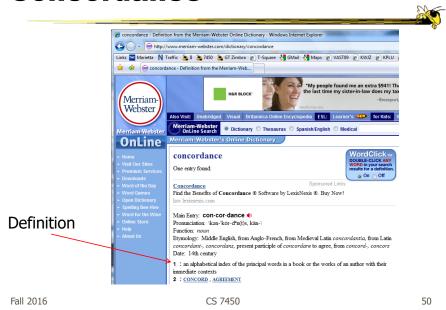
Fall 2016 CS 7450 47

http://www.cs.umd.edu/hcil/textvis/featurelens/

CIKM '07

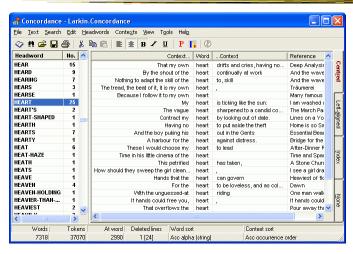
SeeSoft Display

New Testament Eick Journal Comput. & Graph. Stats '94
Fall 2016 CS 7450 48


Beyond Individual Words

- The previous techniques focus largely on words
 - Especially word clouds & wordles
- Can we show combinations of words, ie, actual phrases and sentences, in order to provide more context?

Fall 2016 CS 7450 49


Concordance

25

Concordance in Text

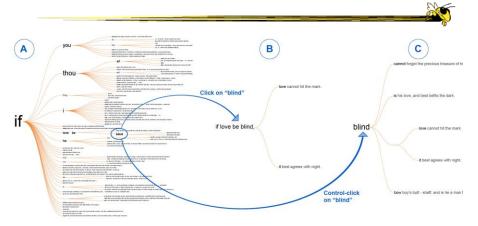
http://www.concordancesoftware.co.uk

Fall 2016 CS 7450 51

Word Tree

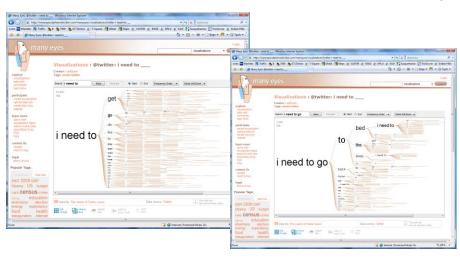
Fall 2016 CS 7450 From King James Bible 52

Word Tree



- Shows context of a word or words
 - Follow word with all the phrases that follow it
- Font size shows frequency of appearance
- Continue branch until hitting unique phrase
- Clicking on phrase makes it the focus
- Ordered alphabetically, by frequency, or by first appearance

Wattenberg & Viégas TVCG (InfoVis) '08


Fall 2016 CS 7450 53

Interaction

Many Eyes' WordTree

Fall 2016 CS 7450 55

Phrase Nets

Was added to Many Eyes

locuments

- Examine unstructured
- Presents pairs of terronhrases such as
 - X and Y
 - X's Y
 - X at Y
 - X (is|are|was|were) Y
- Uses special graph layout algorithm with compression and simplification
 van Ham et al TVCG (InfoVis) '09

Examples

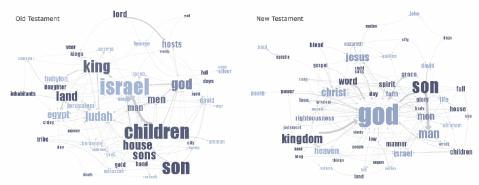


Fig 4. Matching the same pattern on different texts. Here we used the pattern "X of Y" to compare the old and new testaments. Israel takes a central place in the Old Testament, while God acts as the main pattern receiver in the New Testament.

Fall 2016 CS 7450 57

Examples

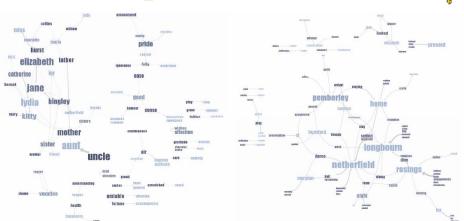
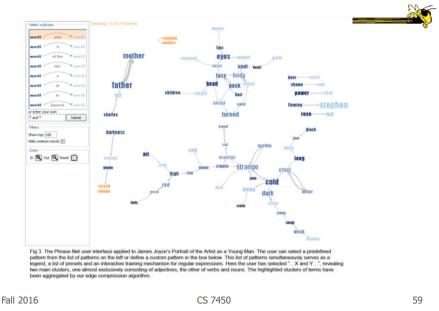



Fig 5. Matching different patterns on the same text. Here we analyzed Jane Austen's *Pride and Prejudice* with "X and Y" and "X at Y" respectively. The left image shows relationships between the main characters amongst others, while the right image shows relationships between locations.

User Interface

Words and Context

- Can we show most frequent words like a word cloud but also provide context?
 - Should each word appear one time?
 - But then how to show context?
 - If appears multiple times, how to make that work?

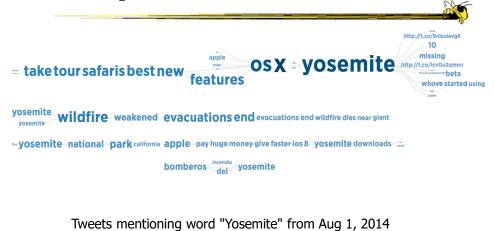
SentenTree

- Elements of word clouds and word trees
 - Highlight keywords using size
 - Show sentence fragments
 - Provide a summary of the dataset
 - Enable drill-down into details

Hu, Wongsuphasawat, and Stasko TVCG '17 (InfoVis '16)

Fall 2016 CS 7450 61

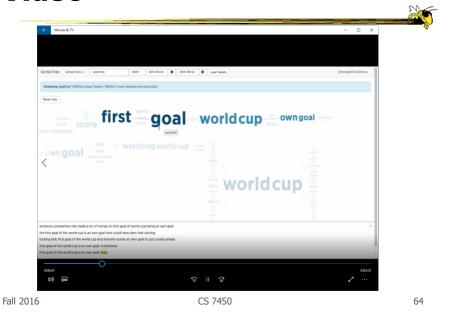
Example



Summary of 189,450 tweets (108,702 unique) posted in a 15 minute time window around the first goal of the opening game of the 2014 Soccer World Cup

(Interaction is key & not shown here)

Example



016 CS 7450 6

63

Video

Fall 2016

32

Another Challenge

- Visualize an entire book
- What does that mean?
 - Word appearances
 - Sentences

66

Fall 2016 CS 7450 65

TextArc

http://textarc.org

Next Time

- More about collections of documents and showing other characteristics of documents
 - Analysis metrics
 - Entities
 - Concepts & themes

Fall 2016 CS 7450 67

Learning Objectives

- Explain key challenges in visualizing a large document or body of text
- Identify and explain different techniques for representing words and concepts in a document
 - Word cloud, Wordle, Parallel tag cloud, SeeSoft, WordTree, PhraseNet, SentenTree, TextArc
- Understand the positives and limitations of word clouds and Wordles
- Describe SeeSoft-style miniature visual representations
- Explain what word concordance is
- Describe how WordTree representation works
- Identify and explain the techniques:
 - Word cloud, Wordle, Parallel tag cloud, SeeSoft, WordTree, PhraseNet, SentenTree, TextArc

Reading

Viegas & Wattenberg '08

Fall 2016 CS 7450 69

Project

- Meetings with TAs
 - Once every two weeks
 - Will be logged
 - Conveys an impression

Upcoming

- Text and Documents 2
- Hierarchical (Tree) Data 1

Fall 2016 CS 7450 71

References

- Marti Hearst's i247 slides
- All referred to papers