Learning Objectives

- Explain the concept of dense pixel/small glyph visualization techniques
- Describe each of the following examples of that technique and list their unique properties
 - Pixel bar chart, Dust 'n Magnet, Kinetica, SandDance, VaR
- Explain the potential benefits and drawbacks of these approaches
- Describe the "set visualization" problem and explain what a Venn Diagram and an Euler Diagram are
- Describe different approaches for set visualization when the number of sets and elements grow larger
- Understand where to turn for assistance with visualizing "Big data"
Recap

- We examined a number of techniques for projecting >2 variables (modest number of dimensions) down onto the 2D plane
 - Iconic displays
 - Table lens
 - Parallel coordinates
 - etc.

Varieties of Techniques
Can We Make a Taxonomy?

- D. Keim proposes a taxonomy of techniques
 - Standard 2D/3D display
 - Bar charts, scatterplots
 - Geometrically transformed display
 - Parallel coordinates
 - Iconic display
 - Needle icons, Chernoff faces
 - Dense pixel display
 - What we're about to see...
 - Stacked display
 - Treemaps, dimensional stacking

Minimum Possible?

- We have data cases with variables
- What’s the smallest representation we can use?
 - How?
Dense Pixel Display

- Represent data case or a variable as a pixel (or as a small glyph such as a circle)
- Million or more per display
- Seems to rely on use of color
- Can pack lots in

- Challenge: What’s the layout? What does position mean?

One Representation

- Grouping arrangement
- One pixel per variable
- Each data case has its own small rectangular icon
- Plot out variables for data point in that icon using a grid or spiral layout

Uses color scale

[Color scale image]
Illustration

schematic representation of 6-dim. data

Related Idea

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements

Keim et al
Information Visualization '02
Idea 1

Height encodes quantity
Width encodes quantity

Idea 2

- Make each pixel within a bar correspond to a data point in that group represented by the bar
 - Can do millions that way
- Color the pixel to represent the value of one of the data point’s variables
Idea 3

Each pixel is a customer
Color encodes amount spent by that person
 High-bright, Low-dark
Ordered by that color attribute too
Right one shows more customers

Idea 4

Product type is x-axis divider
Customers ordered by y-axis: dollar amount
 x-axis: number of visits
Color is (a) dollar amount spent, (b) number of visits, (c) sales quantity
Next Step

- Use a little more room to represent each data case
 - Make each a small glyph such as a circle

- Position of each still important
- Interaction likely becomes a crucial part of the visualization

Dust & Magnet

- Interesting different metaphor
- Data cases represented as small bits of iron dust
- Different attributes/variables given physical manifestation as magnets
- Interact with objects to explore data
Interaction

- Iron bits (data) are drawn toward magnets (attributes) proportional to that data element’s value in that attribute
 - Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust’s color and size can connected to attributes as well
Interaction

- Moving a magnet makes all the dust move
 - Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

See It Live

ftp://ftp.cc.gatech.edu/pub/people/stasko/movies/dnm.mov

Video & Demo
Kinetica

Stress physics metaphor
Touch interaction on tablet

Rzeszotarski & Kittur
CHI '14

Go Big

Dust & Magnet on a large multitouch display

Dai, Sadana, Stolper & Stasko
InfoVis '15 Poster
Sand Dance

- Data items as small squares
- Can position and color based on different attributes
- Multiple layouts provided
- Slick animated transitions

https://www.youtube.com/watch?v=15Hns2igiAg

Demo

https://sanddance.azurewebsites.net/BeachPartyApp/BeachPartyApp.html
Different Layouts

Geo for "Free"

Scatterplot with x-longitude, y-latitude
High Dimensions

- Prior techniques could show lots of data, but not so many dimensions at once
 - Have to pick and choose

Another Idea

- Use the dense pixel display for showing data and dimensions, but then project into 2D plane to encode more information
- VaR – Value and relation display

Yang et al
InfoVis '04
Algorithm

- Find a correlation function for comparing dimensions
- Calculate distances between dimensions (similarities)
- Make each dimension into a dense pixel glyph
- Assign position for each glyph in 2D plane using multi-dimensional scaling
Questions

• What order are the data cases in each dimension-glyph?
 – Maybe there is a predefined order
 – Choose one dimension as “important” then order data cases by their values in that dimension
 “Important” one may be the one in which many cases are similar

Alternative

• Instead of each glyph being a dimension, it can be a data case
Follow-on Work

- Use alternate positioning strategies other than MDS
- Use Jigsaw map idea (Wattenberg, InfoVis ’05) to lay out the dimensions into a grid
 - Removes overlap
 - Limits number that can be plotted

New Layout

Plot the glyphs into the grid positions

Yang et al
TVCG ’07
Set Data & Operations

- Different type of problem
 - Large set of items, each can be in one or more sets
 - How do we visually represent the set membership?

Standard Technique

Venn Diagram

Contains all possible zones of overlap
Alternately

Euler Diagram

Does not necessarily show all possible overlap zones

http://en.wikipedia.org/wiki/File:British_Isles_Euler_diagram_15.svg

But what's the problem?

Bubble Sets

Video

Collins et al
TVCG(InfoVis)'09
ComED & DupED

Item appears once

Item can appear more than once

Video

Riche & Dwyer
TVCG(InfoVis)'10

OnSet

Represent set as a box, elements are spots in that box
Use interaction to do set union, intersection

Sadana, Major, Dove & Stasko
TVCG(InfoVis)'14
Dragging and dropping a PixelLayer to create a new AND MultiLayer.

http://www.cc.gatech.edu/gvu/ii/setvis

OnSet shows the similarity of two sets via the thickness of a band between them. Hovering over a similarity band highlights the common elements between two sets.
Step Back

- Most of the techniques we’ve examined work for a modest number of data cases or variables
 - What happens when you have lots and lots of data cases and/or variables?

Many Cases

Recall

Out5d dataset (5 dimensions, 16384 data items)

(courtesy of J. Yang)
Many Variables

Strategies

- How are we going to deal with such big datasets with so many variables per case?
- Ideas?
General Notion

• Data that is similar in most dimensions ought to be drawn together
 – Cluster at high dimensions

• Need to project the data down into the plane and give it some ultra-simplified representation

• Or perhaps only look at certain aspects of the data at any one time

Mathematical Assistance 1

• There exist many techniques for clustering high-dimensional data with respect to all those dimensions
 – Affinity propagation
 – k-means
 – Expectation maximization
 – Hierarchical clustering
Mathematical Assistance 2

- There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)
 - Multi-dimensional scaling (MDS)
 - Principal component analysis
 - Linear discriminant analysis
 - Factor analysis

Other Techniques

- Other techniques exist to manage scale
 - Sampling – We only include every so many data cases or variables
 - Aggregation – We combine many data cases or variables

 - Interaction (later)
 - Employ user interaction rather than special renderings to help manage scale
Use?

• What kinds of questions/tasks would you want such techniques to address?
 – Clusters of similar data cases
 – Useless dimensions
 – Dimensions similar to each other
 – Outlier data cases
 – …

• Think about the “cognitive tasks” we want to accomplish

Recap

• We’ve seen many general techniques for multivariate data these past two days
 – Know strengths and limitations of each
 – Know which ones are good for which circumstances

 – We still haven’t explored interaction much
Learning Objectives

- Explain the concept of dense pixel/small glyph visualization techniques
- Describe each of the following examples of that technique and list their unique properties
 - Pixel bar chart, Dust 'n Magnet, Kinetica, SandDance, VaR
- Explain the potential benefits and drawbacks of these approaches
- Describe the "set visualization" problem and explain what a Venn Diagram and an Euler Diagram are
- Describe different approaches for set visualization when the number of sets and elements grow larger
- Understand where to turn for assistance with visualizing "Big data"

HW 2

- Recap
- Some solutions
- Problems & issues
- A “recommended” solution
Visualization of the Day

• Checking them out?
• Interesting, creative designs

Project

• Reactions to proposals

• Concerns?
 – Revise or do a new one
• All good?
 – Start gathering data & designing

Reading

- Keim, *Information Visualization*, ‘02
- SandDance video

Upcoming

- InfoVis Systems & Toolkits
- Interaction