Time Series Data

CS 7450 - Information Visualization
November 21, 2016
John Stasko

Learning Objectives

- Identify different types of temporal data
 - discrete, interval, linear, cyclic, continuous, ordinal, branching
- List potential tasks for temporal data analysis
- Familiarity with basic temporal representations
 - Line graph, spiral chart, bubble tracks
- Familiarity with specific temporal representation techniques and systems
 - Lifelines, ThemeRiver/Streamgraph, Cluster/calendar view, LiveRAC, Connected scatterplot
- Discuss the benefits & limitations of all the techniques
- Be able to apply learned knowledge and examples to the design of visualizations for new data and problems
Time Series Data

- Fundamental chronological component to the data set

75% of 4000 samples of graphics from newspapers and magazines ('74-'80) were time-series data!

Data Sets

- Each data case is likely an event of some kind
- One of the variables can be the date and time of the event
- Examples:
 - sunspot activity
 - baseball games
 - medicines taken
 - cities visited
 - stock prices
 - How about events with a duration? Discrete vs. Interval
Data Mining

- Data mining domain has techniques for algorithmically examining time series data, looking for patterns, etc.

- Good when objective is known a priori
- But what if not?
 - Which questions should I be asking?
 - InfoVis better for that

Tasks

- What kinds of questions do people ask about time series data?
Time Series Tasks
(from class)

• What happened at time Y?
• What are the changes & patterns over time?
• When does variable x hit an extreme?
• What are the intervals of time represented in the data?
• Find a variable whose changes/pattern match some pattern.
• Find correlations of particular events.
• What will variable x do in the future?
• How do two variables relate over time?
• What is a variable’s frequency distribution over time?
• How many events of type x occur in a certain time?

Time Series User Tasks

• Examples
 – When was something greatest/least?
 – Is there a pattern?
 – Are two series similar?
 – Do any of the series match a pattern?
 – Provide simpler, faster access to the series
Other Tasks

- Does data element exist at time t?
- When does a data element exist?
- How long does a data element exist?
- How often does a data element occur?
- How fast are data elements changing?
- In what order do data elements appear?
- Do data elements exist together?

Muller & Schumann '03 citing MacEachern '95

Taxonomy

- Discrete points vs. interval points
- Linear time vs. cyclic time
- Ordinal time vs. continuous time
- Ordered time vs. branching time vs. time with multiple perspectives

Muller & Schumann '03 citing Frank '98
Fundamental Tradeoff

- Is the visualization time-dependent, ie, changing over time (beyond just being interactive)?
 - Static
 Shows history, multiple perspectives, allows comparison
 - Dynamic (animation)
 Gives feel for process & changes over time, has more space to work with

Standard Presentation

- Present time data as a 2D line graph with time on x-axis and some other variable on y-axis
Fun One

What If Everybody in Canada Flushed At Once?

http://www.patspapers.com/blog/item/what_if_everybody_flushed_at_once_Edmonton_water_gold_medal_hockey_game/

Today’s Focus

- Examination of a number of case studies
- Learn from some of the different visualization ideas that have been created
- Can you generalize these techniques into classes or categories?
Visual Methods for Analyzing Time-Oriented Data

Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and Christian Tominski

Abstract—Providing appropriate methods to facilitate the analysis of time-oriented data is a key issue in many application domains. In this paper, we focus on the unique role of the parameter time in the context of visually driven data analysis. We will discuss three major aspects—visualization, analysis, and the user. It will be illustrated that it is necessary to consider the characteristics of time when generating visual representations. For that purpose, we take a look at different types of time and present visual examples. Integrating visual and analytical methods has become an increasingly important issue. Therefore, we present our experiences in temporal data abstraction, principal component analysis, and clustering of larger volumes of time-oriented data. The third main aspect we discuss is supporting user-centered visual analysis. We describe event-based visualization as a promising means to adapt the visualization pipeline to needs and tasks of users.

Index Terms—Time-oriented data, visualization, analysis, user.

1 INTRODUCTION AND MOTIVATION

Considering the characteristics of data is vital when designing visual representations. A salient characteristic is whether or not data are related to time. That time is an outstanding dimension is reflected by Shneiderman’s Tasky Data Type Taxonomy [4], where temporal data are identified as one of seven basic data types. Nowadays, time-oriented data are ubiquitous in many application domains, for example, in business, medicine, history, planning, or project management. For a long time, visual methods have been successfully applied to analyze such data. A wide repertoire of interactive techniques for visualizing data sets with temporal dependencies is available. However, many current

http://www.timeviz.net/
Example 1

- Calendar visualization
Tasks

- See commonly available times for group of people
- Show both details and broader context

One Solution

Spiral Calendar

Mackinlay, Robertson & DeLine
UIST '94
Another View

Uses projected shadows on walls

Example 2

- Personal histories
 - Consider a chronological series of events in someone’s life
 - Present an overview of the events
- Examples
 - Medical history
 - Educational background
 - Criminal history
Tasks

- Put together complete story
- Garner information for decision-making
- Notice trends
- Gain an overview of the events to grasp the big picture

Lifelines Project

Visualize personal history in some domain

Video Demo
Medical Display

Features

• Different colors for different event types
• Line thickness can correspond to another variable
• Interaction: Clicking on an event produces more details
• Certainly could also incorporate some Spotfire-like dynamic query capabilities
Benefits

- Reduce chances of missing information
- Facilitate spotting trends or anomalies
- Streamline access to details
- Remain simple and tailorable to various applications

Challenges

- Scalability (thousands of tests)
- Can multiple records be visualized in parallel (well)? Comparisons
 - What trends do you see in the last 8 EKGs?
 - Compare the 8 people who all seem to have the same problem.
New Work

- Work with query results
- Need to align, rank, and filter
- Medical application:
 - Look for temporal coincidence of two events
 - First pneumomonia and asthma attack
 - Medical professionals don’t want to fool with zooming and panning

LifeLines2: Focus on alignment along events
Example 3

- Understand patterns of presence/events over time
- Focus: People’s presence/movements in some space
- Situation:
 - Workers punch in and punch out of a factory
 - Want to understand the presence patterns over a calendar year
- Alternate: Power plant electricity usage over a year

Particulars

- Who is user? – Factory boss/manager
- Problem – Show this large amount of data in an easily understandable and queryable manner
- Data – Punch in/out times for workers
Ideas

• Any ideas on what we could do here?

One Idea

Good
Typical daily pattern
Seasonal trends

Bad
Weekly pattern
Details
Approach Taken

- Cluster analysis
 - Find two most similar days, make into one new composite
 - Keep repeating until some preset number left or some condition met

- How can this be visualized?
 - Ideas?

Display
Characteristics

- Unique types of days (individual or cluster) get their own color
- Contextually placed in calendar and line graph for it is shown
- Stop clustering when a threshold met or at a predetermined number of clusters

Interaction

- Click on day, see its graph
- Select a day, see similar ones
- Add/remove clusters
Insights

- Traditional office hours followed
- Most employees present in late morning
- Fewer people are present on summer Fridays
- Just a few people work holidays
- When the holidays occurred
 - School vacations occurred May 3-11, Oct 11-19, Dec 21-31
 - Many people take off day after holiday
 - Many people leave at 4pm on December 5
 - Special day in Netherlands, St. Nicholas’ Eve

Example 4

- Consider a set of speeches or documents over time
- Can you represent the flow of ideas and concepts in such a collection?
Mapping

- River height (thickness) encodes relative frequency of themes
- Key events overlaid
Example 5

• Similar idea – Stacked graph
• Created new technique called Streamgraph
• Goals:
 – Show multiple time series
 – Be able to see sum
 – Make labels legible
 – Be able to distinguish different layers
 – Make it aesthetically pleasing

Interactive Application

Design Issues

- Curve shape
 - Wiggle, symmetry, balance
 - Definitely some interesting math to do it
- Color choice
- Labeling
- Layer ordering

- Paper provides very nice discussion of this

Example 6

http://researchweb.watson.ibm.com/history/

Flow of changes across electronic documents
Technique

Length – how much text

Time

Make connections

Brightness indicates text age
Registered authors color-coded
Anonymous authors in white

Spacing by revision #
Spacing by time
Example 7

- Computer system logs
- Potentially huge amount of data
 - Tedious to examine the text
- Looking for unusual circumstances, patterns, etc.

MieLog

- System to help computer systems administrators examine log files
- Interesting characteristics
 - Discuss

Takada & Koike
LISA '02
System View

- **Outline area**: pixel per character
- **Tag area**: block for each unique tag, with color representing frequency (blue-high, red-low)
- **Message area**: actual log messages (red – predefined keywords, blue – low frequency words)
- **Time area**: days, hours, & frequency histogram (grayscale, white-high)

Another View

- **Alternate color mappings?**
Interactions

- **Tag area**
 - Click on tag shows only those messages

- **Time area**
 - Click on tiles to show those times
 - Can put line on histogram to filter on values above/below

- **Outline area**
 - Can filter based on message length
 - Just highlight messages to show them in text

- **Message area**
 - Can filter on specific words

Thoughts

- Strengths/weaknesses?
- Other domains in which a similar system could be used?
Example 8

- Very large scale temporal log data
- Show more context of what else was going on at that time
 - Likely have to abstract some then
 - Allow several different levels of detail at once
- Allow drill-down for details

- Domain: Computer systems management

LiveRAC: Computer system management data
Interaction is Vital

Design Principles

- Show familiar visual representations whenever possible
- Provide side-by-side comparisons of small multiple views
- Spatial position is strongest visual cue
- Multiple views are more effective when coordinated through explicit linking
Design Principles

• Follow Shneiderman’s mantra
• Avoid abrupt visual change
• User actions should receive immediate visual feedback

• Assertion: Showing several levels of detail simultaneously provides useful high information density in context

Example 9

• Connected Scatterplot
• Showing two variables over time
 – Use standard scatterplot
 – Plot the two values at different points in time
 – Connect those points, in order, with a line
 – Label key times (e.g., years)
Notice the narrative elements too

Hannah Fairfield
NY Times

“Traces” in Gapminder-style visualization

Robertson et al
TVCG (InfoVis) ’08

http://www.dundas.com/blog-post/in-praise-of-connected-scatter-plots/

Nice Article
Example 10

• Serial, periodic data
• Data with chronological aspect, but repeats and follows a pattern over time
 – Hinted at in last case study

• How might one visualize that?

Using Spirals

• Standard x-y timeline or tabular display is problematic for periodic data
 – It has endpoints
• Use spiral to help display data
 – One loop corresponds to one period
Basic Spiral Display

One year per loop
Same month on radial bars
Quantity represented by size of blob

Is it as easy to see serial data as periodic data?

Advanced Spiral

Same mapping as previous one
Different foods represented by different colors and drawn at different heights
Can you still see serial and periodic attributes?
As with all 3-D, requires navigation
Compare with Spotfire

Another standard spiral display
Color mapped to movie type
+/− compared to Spotfire?

Unknown Periods

What if a data set doesn't have a regular temporal period?
Must do some juggling to align periods
Example 11

- How about events in time and place?
 - Many applications of this problem

GeoTime

- Represent place by 2D plane (or maybe 3D topography)
- Use 3rd dimension to encode time
- Object types:
 - Entities (people or things)
 - Locations (geospatial or conceptual)
 - Events (occurrences or discovered facts)
Overview

- **Objective:** visualize spatial interconnectedness of information over time and geography with interactive 3-D view

![Image of 3D visualization](http://www.oculusinfo.com/)

Telling a Story

![Image of story visualization](image-url)
Useful Widgets

Conclusions

- Think about the data
 - What characteristics?
- Can InfoVis help?
 - Maybe not needed
- Think about the visualization techniques
- Which technique(s) work best for your problem?
Taxonomy

- Discrete points vs. interval points
- Linear time vs. cyclic time
- Ordinal time vs. continuous time
- Ordered time vs. branching time vs. time with multiple perspectives

Muller & Schumann ’03 citing Frank ’98

Learning Objectives

- Identify different types of temporal data
 - discrete, interval, linear, cyclic, continuous, ordinal, branching
- List potential tasks for temporal data analysis
- Familiarity with basic temporal representations
 - Line graph, spiral chart, bubble tracks
- Familiarity with specific temporal representation techniques and systems
 - Lifelines, ThemeRiver/Streamgraph, Cluster/calendar view, LiveRAC, Connected scatterplot
- Discuss the benefits & limitations of all the techniques
- Be able to apply learned knowledge and examples to the design of visualizations for new data and problems
Reading

• Mereilles chapter 3

Upcoming

• No class Weds
 – Thanksgiving break
• Visual Analytics
• Exam
References

- Spence and CMS books
- All referred to articles
- Jim Foley & Chris Plaué’s take on these slides