
“I may not have gone where I intended to go, but I think I have 
ended up where I needed to be.” –Douglas Adams

“All you need is the plan, the road map, and the courage to press 
on to your destination.” –Earl Nightingale

Disclaimer: I use these notes as a guide rather than a 
comprehensive coverage of the topic. They are neither a 
substitute for attending the lectures nor for reading the 
assigned material.



Announcements

• HW1 due Sunday night, Sept 1 @ 11:55pm
• HW2 is much more challenging than HW1. Start early!
• Game engine & HWs – piazza only; please no posting on 

any public forum (public git, stackoverflow, etc)
• Office hours

– https://calendar.google.com/calendar?cid=dGozaWc2ZGh1cTg0
OG44aWQ3cGo5bDdlaG9AZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLm
NvbQ

• Special lectures
• Labor day.

https://calendar.google.com/calendar?cid=dGozaWc2ZGh1cTg0OG44aWQ3cGo5bDdlaG9AZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ


Grid Generation Hints

• Verify no world line goes through grid lines (rayTraceWorld)

• Verify no obstacle point within grid cell? Grid corner in 
obstacle? 

– e.g. pointInside

• Please check the following sections

– “Miscellaneous utility functions”

– “Hints”



PREVIOUSLY ON…



Modelling and Navigating the Game World



N-1: Grids, Path Networks

1. What’s the intuition behind iterative deepening?
2. What are some pros/cons of grid navigation?
3. What are some benefits of path networks?
4. Cons of path networks?
5. What is the flood fill algorithm?
6. What is a simple approach to using path navigation nodes?
7. What is a navigation table?
8. How does the expanded geometry model work? Does it work with 

map gen features?
9. What are pros and cons of expanded geometry?



Graphs, Search, & Path Planning
Continued: Models of world for path planning

2019-08-28; 
See also: Buckland Ch 5 & 8,

Millington & Funge Ch 4



Path finding models

1. Tile-based graph – “grid navigation”
• Simplest topography

• assume static obstacles

• imaginary latice of cells superimposed over an environment such that an 
agent can be in one cell at a time. 

• Moving in a grid is relatively straightforward: from any cell, an agent can 
traverse to any of its four (or eight) neighboring cells

2. Path Networks / Points of Visibility NavGraph

3. Expanded Geometry

4. NavMesh



Path finding models

1. Tile-based graph – “grid navigation”

2. Path Networks / Points of Visibility NavGraph
• does not require the agent to be at one of the path nodes at all times. The 

agent can be at any point in the terrain. 

• When the agent needs to move to a different location and an obstacle is 
in the way, the agent can move to the nearest path node accessible by 
straight-line movement and then find a path through the edges of the 
path network to another path node near to the desired destination.

3. Expanded Geometry

4. NavMesh



Path finding models

1. Tile-based graph – “grid navigation”

2. Path Networks / Points of Visibility NavGraph

3. Expanded Geometry

• Discretization of space can be smaller

• 2 tier nav: Continuous, non-grid movement in local area

• Can work with auto map generation

• Can plan nicely with “steering behaviors”

4. NavMesh



Model 3: Expanded Geometry

• Automatic, and no wall bumping.

• Also a two-tiered navigation system

– Local, continuous

– Remote

• Automatically expand boundaries of obstacles (∆ ≥ agent_radius)

• Add vertices as nodes

• Test line of sight for all vertices (O(n2))

• Add edges where (v1, v2) == true



Expanded Geometry: Corner “Gotchas”

• Expanding edges 
– can result in overestimated 

offsets

• Expanding vertices 
– can result in underestimated 

offsets

• Equidistant expansion 
– introduces non linear 

curvature (curved at corner 
offsets)

• Squaring off/selective 
mitering is compromise to 
avoid curves 

Way overestimated 
offset hereOff a little at this corner, but not too bad

Offset from edges by agent radius

Offset from vertices by agent radius

Vertices fine, but edges off

Angle of offset from 
vertex defined by 
avg of adj edge 
normals

Agent

Obstacle Geometry

C
re

d
it

: 
Je

ff
re

y 
W

ils
o

n



Path finding models

1. Tile-based graph – “grid navigation”

2. Path Networks / Points of Visibility NavGraph

3. Expanded Geometry

4. NavMesh



M4: NavMesh

• Win: compact rep, fast search, auto create

• Each node (list of edges) is a convex polygon

• Convex = Any point within the polygon is unobstructed from 
any other

• Can be generated from the polygons used to define a map



Generating the Mesh

• Lots of algorithms

• Optimal:

– Fewest polygons, smallest discretization possible

– NP-complete

• Greedy:

– Find triangles 
guarantees convex

– Merge triangles



Generating the Mesh: 
Greedy/Simple Approach

For point a in world points:

For point b in world points:

For point c in world points:

if (it is a valid triangle) and !exists:

add triangle to mesh

Iterate through triangles to merge to quads

Iterate through quads to merge to 5-sided shapes...





Nav Meshes + Waypoints

• Put a waypoint in center of each nav mesh

– It’s important to get a good set of nav meshes



Nav Meshes + Waypoints

• Put a waypoint at adjoining edges



Nav Meshes + Waypoints

• Put a waypoint at corners of obstacles



Nav Meshes + Waypoints

• Put a waypoint at edges and corners



See

• ~12:00 https://www.gdcvault.com/play/1024912/Beyond-Killzone-
Creating-New-AI
– Navmesh, waypoints, string pulling, a*, Bezier path smoothing, steering 

behaviors, polygon vs point paths
– http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-

algorithm.html
• https://www.gamedev.net/forums/topic/669843-the-simple-funnel-algorithm-pre-visited/

– http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/shortest-homotopic-
paths.pdf

• ~5:00, ~20:30: Flood fill, navmesh, blackboards, hash, cheating, 
crowdsource/breadcrumb/clustering/filtering: 
https://youtu.be/iVBCBcEANBc

https://www.gdcvault.com/play/1024912/Beyond-Killzone-Creating-New-AI
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
https://www.gamedev.net/forums/topic/669843-the-simple-funnel-algorithm-pre-visited/
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/shortest-homotopic-paths.pdf
https://youtu.be/iVBCBcEANBc




Waypoints vs. NavMesh



5 Reasons why 
waypoints fall short



1) Some worlds need
WAY too many to match freedom of nav mesh



2) Waypoints make NPCs zig-zag



NavMesh Smoothing



3) Waypoints don’t allow for 
path correction: Alterable/Generated Content



4) Waypoints don’t work well for
different characters



NavMesh solution



5) They don’t hold
enough data

• Game character frequently queries 
the pathfinding system

• Can test the predicted end position 
of each of these animations against 
the navigation mesh

• Raycasting is possible, but 
expensive, and… can't tell me if the 
swordsman will land in a position 
that the level designers actually 
want characters to walk in



Designers need to be
able to add info…



Nav Meshes allow for many agents



NavMesh

• Isn’t pathfinding on a NavMesh slower?

– No

• Graph usually has fewer nodes

• Movement not restricted within the mesh (convex poly 
assumption)

• Only need to path in between individual sections of the mesh



NavMesh

• Don’t they take up a lot of memory?
– No

• Can be smaller than dense waypoint graphs

• Smaller than collision mesh (ignores walls, etc.)
– https://developer.valvesoftware.com/wiki/Collision_mesh

• Fairly compact representation

• May be generated automatically

https://developer.valvesoftware.com/wiki/Collision_mesh


Question 2:
Memory

Rank these four space representations according to the memory they 
would use for the same simple scene (empty space and obstacles):

1. Grid

2. Path network (designed)

3. Path network  (flood fill)

4. Nav Mesh + Path network

Why?



Game design can cover Game AI

• Cheating / hiding the problem

– Most AIs don't live long enough to let you spot the 
flaws in their pathfinding (LOS stop, shoot)

– Many 1P FPS, AIs don't move very much, shoot from 
relatively fixed position.

– FPS games with AI sidekicks kill the enemy AIs so 
quickly they don't have time to move very far.

– AI agents can “give up” and return to a safe default

• ~0:50 https://www.youtube.com/watch?v=gXjUzHhNjIA

https://www.youtube.com/watch?v=gXjUzHhNjIA


FPS implications

• What if we force characters to use melee weapons (e.g. 
Covenant soldiers in Halo, the Icarus stealth assassins in 
F.E.A.R., or the Metroids in a Metroid Prime game)? Which 
world rep technique did they use?



How do you handle
walking under bridges?



Is this good for all games?

• Not necessarily

• Find the right solution for your problem


