Decision Trees

6601

CHAPTER 3 DECISION TREE LEARNING

Classification

A_{1}	A_{2}	\ldots	A_{N}	C
v_{11}	v_{12}	\ldots	$v_{1 N}$	c_{1}
v_{21}	v_{22}	\ldots	$v_{2 N}$	c_{2}

Decision Tree

Decision Tree

H	W	O	P
H	S	S	$Y / N ?$
N	S	O	$Y / N ?$
H	W	R	$Y / N ?$

Decision Tree

CHAPTER 3

Decision Tree

H	W	O	P
H	S	S	N
N	S	O	Y
H	W	R	$Y / N ?$

Decision Tree

Continuos Attributes

Continues Attributes

Guillotine Cut

What is the tree?

Continues Attributes

Decision Tree

Decision Tree

Which Tree is better if the classification accuracy is the same?

Decision Tree Learning

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Entropy

Claude Shannon

Measure Of

Uncertainty / Unpredictability in a Random Variable

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)
$$

Quantifies Information in a Message

Entropy

$$
\begin{gathered}
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right) \\
\left(-\frac{6}{12} * \log _{2} \frac{6}{12}\right)-\left(-\frac{6}{12} * \log _{2} \frac{6}{12}\right)=1
\end{gathered}
$$

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Information Gain

$$
\operatorname{Gain}(S, A) \equiv \operatorname{Entropy}(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Calculate

	$H(X)=$	$\sum_{i=1}^{n} p\left(x_{i}\right) \operatorname{lOg}_{b} p\left(x_{i}\right)$			
Gain $(S, A) \equiv$ Entropy $(S)-\sum_{\text {veValues(A) }}$	$\frac{\left\|S_{v}\right\|}{\|S\|}$ Entropy $\left(S_{v}\right)$				
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Result

$$
\begin{aligned}
\operatorname{Gain}(S, \text { Outlook }) & =0.246 \\
\operatorname{Gain}(S, \text { Humidity }) & =0.151 \\
\text { Gain }(S, \text { Wind }) & =0.048 \\
\text { Gain }(S, \text { Temperature }) & =0.029
\end{aligned}
$$

Decision Tree Learning

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return MODE (examples) else
best \leftarrow Choose-Attribute(attributes, examples) tree \leftarrow a new decision tree with root test best for each value v_{i} of best do examples $_{i} \leftarrow\left\{\right.$ elements of examples with best $\left.=v_{i}\right\}$ subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, $\operatorname{MODE}($ examples $)$) add a branch to tree with label v_{i} and subtree subtree
return tree

Greedy Algorithm

- In search terms:A greedy algorithm with the Information Gain as a Heuristic
- Could we do better?

Example

@relation 'gatech_admission'
@attribute 'recommendation' \{'strong', 'weak'\}
@attribute 'gpa' real
@attribute 'gre_math' real
@attribute 'gre_verbal' real
@attribute 'admitted' \{'yes','no'\}
@data
'strong', 4, 800, 800, 'yes' 'weak', 3.4, 600, 500, 'yes' 'strong', 3.6, 800, 550, 'yes' 'strong', 3, 700, 650, 'yes' 'weak', 3.2, 800, 800, 'yes' 'strong', 4, 550, 500, 'yes' 'strong', 3.7, 700, 750, 'yes' 'weak', 4, 800, 200, 'yes' 'strong', 4, 200, 800, 'yes' 'strong', 3.4, 600, 500, 'yes' 'strong', 3.6, 800, 550, 'yes' 'weak', 3, 700, 650, 'yes' 'strong', 4, 550, 500, 'yes' 'strong', 3.7, 700, 750, 'yes' 'weak', 2.8, 800, 800, 'no' 'weak', 4, 200, 200, 'no'
'strong', 2, 500, 200, 'no' 'strong', 3.5, 200, 800, 'no' 'weak', 2, 800, 800, 'no' 'weak', 1.7, I00, 100, 'no' 'weak', 3.7, 50, 0, 'no' 'weak', 2.8, 100, 100, 'no' 'weak', 4, 200, 200, 'no' 'strong', 2, 100,100, 'no' 'weak', 1.7, I00, 100, 'no' 'weak', 3.7, 50, 0, 'no' 'weak', 2.8, I00, 800, 'no' 'weak', 4, 200, 200, 'no' 'strong', 2, 500, 200, 'no' 'strong', 3.5, 200, 800, 'no'

What is the best?

'weak', 2, 800, 800, 'no' 'weak', 1.7, 100, 100, 'no' 'strong', 3.7,50, 0, 'no' 'weak', 2.8, I00, 800, 'no' 'weak', 4, 200, 200, 'no' 'strong', 2, 500, 200, 'no' 'strong', 3.5, 200, 800, 'no' 'weak', 2, 800, 800, 'no' 'weak', I.7, 100, 100, 'no'
'weak', 3.7,50, 0, 'no'

Weka Demo

Use Case: Mobile Text

Entry

Use Case: Fat Thumbs

prob ≤ 0
| prevcuradjacent_nom = False
| | curfutadjacent_nom = False
| | | dropprobdiffiabs ≤ 0.000934 : repeat ($104.0 / 45.0$)
| | | dropprobdiff1abs > 0.000934
| | | futneighborprob ≤ 0 : nonobo ($552.0 / 11.0$)
| | | futneighborprob >0
| | | | | neighborprob ≤ 0.011765; nonobo ($143.0 / 21.0$)
| | | | | neighborprob > 0.011765
| | | | | ud_sub1 ≤-140 : nonobo (172.0/80.0)
| | | | | | ud.sub1 > -140: obosubstitute (527.0/109.0)
| | curfutadjacent_nom $=$ True: rollon (323.0/73.0)
| prevcuradjacent_nom $=$ True: rolloff (555.0/46.0)
prob >0
| dt.ud.0.p1 ≤ 124
| | dropprobdiffsign ≤-1 : rolloff (155.0/36.0)
| | dropprobdiffaign >-1: nonerror (111.0/49.0)
| | | | | neighborprob ≤ 0.003185 : nonerror ($142.0 / 35.0$)
| | | | | neighborprob >0.003185
| | | | | | average.dd. $2 \leq-88$
| | | | | | | letterfreq ≤ 0.04853 : obosubstitute (106.0/35.0)
| | | | | | | | letterfreq > 0.04853 : nonobo (142.0/69.0)
| | | | | | average.dd. $2>-88$
| | | | | | | neighborprobdiff ≤ 0.009091 : nonerror (181.0/65.0)
| | | | | | | neighborprobdiff > 0.009091: obosubstitute (229.0/82.0)
| | | | curfutadjacent_non = True: nonerror (129.0/62.0)
| | | futprob > 0; nonerror (94376.0/1715.0)

Use Case: Fat Thumbs

No Dictionaries were harmed in the making of this Decision Tree.

What are the drawbacks?

Decision Trees are known to over fit the data

Ensemble Learning

Mixture of Experts: Have we seen one before?

Random Forests

Winning!

Random Forests

Bagging: Bootstrap AGGregation

- INPUT: Data Set of size N with M dimensions
- I) SAMPLE n times from Data
- 2) SAMPLE m times from Attributes
- 3) LEARN TREE on sampled Data and Attributes
- REPEAT UNTIL k trees

Use Case: Kinect

Use Case: Kinect

Use Case: Kinect

Pixel to classify

> (a)

(b)

Use Case: Kinect

Training 3 trees to depth 20 from I million images takes about a day on a 1000 core cluster

