PROBLEM SOLVING AND SEARCH

CHAPTER 3
Outline

◊ Problem-solving agents
◊ Problem types
◊ Problem formulation
◊ Example problems
◊ Basic search algorithms
Problem-solving agents

Restricted form of general agent:

```plaintext
function Simple-Problem-Solving-Agent (percept) returns an action
  static: seq, an action sequence, initially empty
          state, some description of the current world state
          goal, a goal, initially null
          problem, a problem formulation
  state ← Update-State(state, percept)
  if seq is empty then
    goal ← Formulate-Goal(state)
    problem ← Formulate-Problem(state, goal)
    seq ← Search(problem)
    action ← Recommendation(seq, state)
    seq ← Remainder(seq, state)
  return action
```

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Example: Romania
Problem types

Deterministic, fully observable \rightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \rightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \rightarrow contingency problem
Percepts provide new information about current state
Solution is a contingent plan or a policy
Often interleave search, execution

Unknown state space \rightarrow exploration problem ("online")
Example: vacuum world

Single-state, start in #5. Solution??

1
2
3
4
5
6
7
8
Example: vacuum world

Single-state, start in #5. Solution?? [Right, Suck]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\} e.g., Right goes to \{2, 4, 6, 8\}. Solution??

1
2
3
4
5
6
7
8
Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., Right goes to \{2, 4, 6, 8\}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., Right goes to \{2, 4, 6, 8\}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]
Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function \(S(x) = \) set of action–state pairs
 e.g., \(S(\text{Arad}) = \{\langle \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rangle, \ldots \} \)

goal test, can be
 explicit, e.g., \(x = \) “at Bucharest”
 implicit, e.g., \(\text{NoDirt}(x) \)

path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 \(c(x, a, y) \) is the **step cost**, assumed to be \(\geq 0 \)

A solution is a sequence of actions leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex

\Rightarrow state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

 e.g., “Arad \rightarrow Zerind” represents a complex set

 of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”

 must get to some real state “in Zerind”

(Abstract) solution =

 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
Example: vacuum world state space graph

states??
actions??
goal test??
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: *Left*, *Right*, *Suck*, *NoOp*

goal test??

path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: *Left, Right, Suck, NoOp*
goal test??: no dirt
path cost??: 1 per action (0 for *NoOp*)
Example: The 8-puzzle

Start State

Goal State

states
actions
goal test
path cost
Example: The 8-puzzle

states: integer locations of tiles (ignore intermediate positions)
actions
goal test
path cost
Example: The 8-puzzle

- **states**?: integer locations of tiles (ignore intermediate positions)
- **actions**?: move blank left, right, up, down (ignore unjamming etc.)
- **goal test**?
- **path cost**?
Example: The 8-puzzle

Start State

- 7 2 4
- 5 6
- 8 3 1

Goal State

- 1 2 3
- 4 5 6
- 7 8

states: integer locations of tiles (ignore intermediate positions)

actions: move blank left, right, up, down (ignore unjamming etc.)

goal test: = goal state (given)

path cost
Example: The 8-puzzle

- **States**: integer locations of tiles (ignore intermediate positions)
- **Actions**: move blank left, right, up, down (ignore unjamming etc.)
- **Goal Test**: = goal state (given)
- **Path Cost**: 1 per move

[Note: optimal solution of \(n\)-Puzzle family is NP-hard]
Example: robotic assembly

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute
Tree search algorithms

Basic idea:
 offline, simulated exploration of state space
 by generating successors of already-explored states
 (a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end
Tree search example
Tree search example
Tree search example
Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The **Expand** function creates new nodes, filling in the various fields and using the **SuccessorFn** of the problem to create the corresponding states.
Implementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure
 fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem, State[node]) then return node
 fringe ← InsertAll(Expand(node, problem), fringe)
 return

function Expand(node, problem) returns a set of nodes
 successors ← the empty set
 for each action, result in Successor-Fn(problem, State[node]) do
 s ← a new Node
 Parent-Node[s] ← node; Action[s] ← action; State[s] ← result
 Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, action, s)
 Depth[s] ← Depth[node] + 1
 add s to successors
 return successors
Search strategies

A strategy is defined by picking the **order of node expansion**

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- \(b\)—maximum branching factor of the search tree
- \(d\)—depth of the least-cost solution
- \(m\)—maximum depth of the state space (may be \(\infty\))
Uninformed search strategies

Uninformed strategies use only the information available in the problem definition.

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Diagram:
- **A**
 - **B**
 - **D**
 - **E**
 - **C**
 - **F**
 - **G**
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete??
Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space??
Properties of breadth-first search

Complete Yes (if b is finite)

Time $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space $O(b^{d+1})$ (keeps every node in memory)

Optimal
Properties of breadth-first search

Complete? Yes (if \(b \) is finite)

Time? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}) \), i.e., exp. in \(d \)

Space? \(O(b^{d+1}) \) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs \(= 8640 \text{GB} \).
Uniform-cost search

Expand least-cost unexpanded node

Implementation:
\[\text{fringe} = \text{queue ordered by path cost, lowest first} \]

Equivalent to breadth-first if step costs all equal

Complete? Yes, if step cost \(\geq \epsilon \)

Time? \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{[C^*/\epsilon]}) \)
where \(C^* \) is the cost of the optimal solution

Space? \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{[C^*/\epsilon]}) \)

Optimal? Yes—nodes expanded in increasing order of \(g(n) \)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:
\(\text{fringe} = \text{LIFO queue, i.e., put successors at front}\)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

- Diagram of depth-first search with nodes A, B, C, D, E, F, G, H, I, J, K, L, M, N, O.
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Chapter 3 46
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

-fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\[\text{fringe} = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe = \text{LIFO queue, i.e., put successors at front}$
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete??
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 \Rightarrow complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space??
Properties of depth-first search

Complete No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space $O(bm)$, i.e., linear space!

Optimal
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path

⇒ complete in finite spaces

Time? $O(b^m)$: terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space!

Optimal? No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

Recursive implementation:

```plaintext
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff

  cutoff-occurred? ← false
  if Goal-Test(problem, State[node]) then return node
  else if Depth[node] = limit then return cutoff
  else for each successor in Expand(node, problem) do
      result ← Recursive-DLS(successor, problem, limit)
      if result = cutoff then cutoff-occurred? ← true
      else if result ≠ failure then return result
  if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

Algorithm:

```plaintext
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        result ← DEPTH-LIMITED-SEARCH(problem, depth)
        if result ≠ cutoff then return result
    end
```

Explanation:

The iterative deepening search algorithm is a method for solving problems using depth-first search. It starts by performing a depth-limited search with a very shallow depth limit and gradually increases the depth limit until a solution is found. This approach ensures that the algorithm avoids the exponential growth inherent in pure depth-first search, making it more efficient for problems with a large branching factor. The algorithm is particularly useful for problems where the depth of the solution may be unknown or very large.
Iterative deepening search $l = 0$
Iterative deepening search $l = 1$
Iterative deepening search \(l = 2 \)

Limit = 2

Chapter 3
Iterative deepening search $l = 3$

Limit = 3
Properties of iterative deepening search

Complete??
Properties of iterative deepening search

Complete?? Yes

Time??
Properties of iterative deepening search

Complete Yes

Time \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal?
Properties of iterative deepening search

Complete Yes

Time \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space \(O(bd)\)

Optimal Yes, if step cost = 1
 Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right leaf:

- \(N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450\)
- \(N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100\)

IDS does better because other nodes at depth \(d\) are not expanded

BFS can be modified to apply goal test when a node is *generated*
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{c^*/\epsilon})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{c^*/\epsilon})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function _Graph-Search_ (_problem, fringe_) **returns** a solution, or failure

- _closed_ ← an empty set
- _fringe_ ← _INSERT_ (_MAKE-NODE_ (_INITIAL-STATE_[_problem_]), _fringe_)

loop do

- if _fringe_ is empty then return failure
- _node_ ← _REMOVE-FRONT_ (_fringe_)
- if _GOAL-TEST_ (_problem, State[node]_) then return _node_
- if _State[node]_ is not in _closed_ then
 - add _State[node]_ to _closed_
 - _fringe_ ← _INSERTALL_ (_EXPAND_ (_node, problem_), _fringe_)

end
Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

Variety of uninformed search strategies.

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.

Graph search can be exponentially more efficient than tree search.