e ec21

science
& beyond.

St.Louis,
MO

Implementing Performance Portable
Graph Algorithms Using Task-Based
Execution

Umit V. Catalyiirek

Georgia Institute of Technology & Amazon Web Services’

Joint work with
Abdurrahman Yasar, Georgia Institute of Technology & NVIDIA
Sivasankaran Rajamanickam & Jonathan Berry, Sandia National Laboratories

* This presentation describes work performed at Georgia Tech and is not associated with Amazon.

Graphs are Ubiquitous

Linkedin Ego-Net DBLP Ego-Net

They are growing. Up to billions of vertices and edges
Fast, efficient analysis is important and pervasive

Many graph processing frameworks have been proposed

Image credits:

Jenn Caulfield, Social network vector illustration, 2018 Albert-LdszI6 Barabdsi/BarabasiLab 2019
Caleb Jonson, How to Visualize Your Twitter Network, 2014

PRI TR Cetalyirek "mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA"32021 - Novis,2021 2

Heterogeneous Systems are Here

More are coming...

Our current target environment

A Single Computing Node

A TDAlab

How can we develop efficient parallel graph algorithms that run well on shared-memory
and heterogeneous systems as well as distributed-memory systems?

Block-based graph algorithms offer a good compromise between

efficient parallelism and architecture agnostic algorithm design

Parallel Graph Algorithms by Block
(PGADbLB)

D O G

N

Data/Computation Partitioning

Performance Portability
Block-Based Alg. Design

AR

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

K

Design Goals of PGAbB

We have three design goals:

o An expressive programming model

o Execute graph kernel operations on different architectures.
o Combine the results coming from different architectures

o Address major efficient parallel graph algorithm implementation
challenges at behind the scenes.

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

IAA3 2021 - Nov 15, 2021

System Overview

PGADbB API

Scheduler

Layout Manager

I/O Handler PIGO

An Overview of PGAbB
https://github.com/G T-TDAlab/PIGO https://github.com/GT-TDAlab/SARMA

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Algorithm Design Steps

Block List Attribute Execution Kernel
Composition Assignment Handling Development
Generic and Custom Before After | WorkEs Host and Device

Block-List Generators. Iter. lter. tim. Kernels
Required Optional

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Execution Flow

Layout Management Block List Composition

B()/Bl/BQ e g LO Ll LQ L3 L4 L5
— — A OO0 [B0O |CON EE O EE
Bg/./B5 lSOrting;g
— > Z:g
Bo (B By ; Lo| [L | s
OO [COm EZm
SymmetricTPartitioner ;
- La) __Kn(Ly)
E // \ [1] Kg(Lz) /df_(Lzl)
N
= [~ 2. =
STOP
I/0 Handling Scheduling

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Toy Graph

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Symmetric Rectilinear Partitioning

Too | To1 |[To2 Too | To1 |To2
|

Tio |l i1 [T12 Tio| Ti1 |Ti2

Too | Toq |[To2 Too | Toq |Too

A simple example

o Restricted rectilinear partitioning:
o Can be obtained by aligning the same partition vector to rows and columns.
o We showed this problem is NP-Complete too.
o We proposed several heuristics and optimizations.
o PGADB can be used with 1D and 2D partitioning. We will use 2D symmetric
partitioning in this talk.

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

B

A block (B;) : Set of edges.
Graph,G =UB;,and N B; = @

BO — {(011)1 (0,2), (1)0): (210)}

Bl — {(113)1 (1;4‘), (213)}
BZ — {(3,1), (3)2): (4’1)}

B; = {(3,4),(3,5),(4.3),(4,5),(5,3), (54)}

B,

A TDAlab

Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Block List

B, B

1
Block list (L; = (B;, By, .., By)) : list of
ordered block references based on a
rule.
Ly = (Bo>
Ll — (Bl'BS>
Ly = (Bo»31> L, = (Bo»Bz;B3)
L; = (B1»Bz> L; = <B3>
Combined Example Generalized Example

BZ B3

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Categorizing Graph Algorithms

Dijkstra Jaccard Rank
Y PageRank
TS MiniTri Floyd-Warshall
kCore BFS Butterfly
_ o e kTruss Counting
*Shlloach-Vlshkln
Triangle
S Afforest Counting %
Activation Multi Block
Based Pattern Based

A TDAlab

A kernel is functor that takes a block list as input

PageRank = U;PR((B;))

PR

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

A task, T;, is defined with a kernel that operates on a block list.

PR PR PR

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Attributes

B4

Vertex Edge Global
Diagonal blocks Blocks Custom
Ref. to Source
and Destination Self Custom

Reduction Reduction
Methods Methods Custom

B, B,

4TDA|ab Catalylrek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution” IAA3 2021 - Nov 15, 2021

Implemented Algorithms

Block-List Attribute Before After lter. Host & Device Kernels

Iter.
PageRank Single- Vertex - Check Err. Rank Sum — Score Comp.
Block
Shiloach- Single- Global: Reset Check Hook — Link
Vishkin Block Array, Counter counter
counter
Afforest Single- Global: - - Sample —» Compress —
Block Array Connect —» Compress
BFS Activation Global: - Check Top-Down and/or Bottom-
Queues Queue Up BFS
Triangle Multi-Block Global: - - List Intersection

Counting Counter var.

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Triangle Counting Problem

Count mutually connected 3 vertices: u, v, w

Triangle Counting Problem: Find the number
of three-cycles (triangles) in an undirected
graph G.

Important kernel which forms the core of; Where u <v<w

o community detection, w
o dense sub-graph discovery,
o k-truss decomposition,

o sub-graph isomorphism etc.

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Partitioning and Task Construction

il 2D Partitioning
u ® ® Cartesian ~ Symmetric Rectilinear
(u,v) in By
BO,I BO,Z (V’W) in B1,2
(U,W) in BO,Z
® Block List: Triple of Blocks
Bi
Bij — Bjx — Bix
1<j< k

How to Compose Task List

A Task: LI({ B; , B; 1, B;)

Bo,0 Bo,o Bo,o 4 Bp2B22Bo» 2
Bo,o Bo,1 Bo,2 — —
Bo,0Bo,1 Bo,1 9 By 1B;i1Bi 3
Bo,0Bo,2 Bo 2 6 B11Bi3Bi, 5
B B B
b0 b b Bo,1 B1,1Bo,1 3 By 3ByyBi 1
By1B{,B 7 B,,B,,B 0
B, By, B,, 0,1 1,2 o2 2,2 D22 Dy o

Task list composition.

Sorting task list

PR Tl Cetalyirek “mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA'32021 - Novis,2021 20

Hybrid Execution

Heavier Tasks: GPU Lighter Tasks: CPU
from heavier to lighter from lighter to heavier

s =c=o-HE8E8

Execution Queue

A TDAlab

Sequential Execution Time Comparison in CPU

bbTC [TPDS’21] is available at
http://github.com/GT-TDAlab/bbTC

Latapy

kkTri (LL)
kkTri (LU)
TCM
bbTC

50 -

Latapy s

Latapy; “Main-memory triangle computations for very large .S 40 -
(sparse (power-law)) graphs”; TCS’08.

TCM

Shun and Tangwongsan; “Multicore triangle computations
without tuning”; ICDE’15.

w
o

N
o

kkTri

Wolf et al.; “Fast linear algebra-based triangle counting
with kokkoskernels”; HPEC’17.

Execution Time (m

=
o

TriCore (will be used next slide)
Liu et al.; “Tricore: Parallel triangle counting on

O N
gpus”; SC'18 scale25 Twitter Friendster
Graphs

Even sequential bbTC outperforms other algorithms in all graph instances.

PR Tl Cetalyirek “mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA'32021 - Novis,2021 22

http://github.com/GT-TDAlab/bbTC

Comparison with the state-of-the-art

w01 8y e El - +
m & Pocaaans
g : ..: ":
208 & 28 - Running on a system with 2 x
£ “ on: S & Power9 + 2 V100s
« 01 tmee . . e bbTC Even bbTC-GPU outperforms fastest
O H o - + . p
g o I S i v+ bbTC-GPU GPU code TriCore*
EY 8¢ e & + bbTC-CPU
= ‘ : ';'.
g’ 0.2 : ® og - TriCore *TriCore starts everything in GPU memory, and it is highly
B :: 4 "? % "’ ® TCM unstable: deviates up to 40%.
2 rie + KKTri

00 u $

0 5 10 15 20 25

Proximity to the best performing method

PR T Cetalyirek "mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA'32021 - Novis,2021 23

Related Work

CPU-Based
~

GPU-Based
~

Edge-Centric

GraphMat
Linear-Algebra Based

PEGASUS L LAGraph
GraphPad M GraphBlas

Block-Centric
GoFFish

Hand-Optimized

R

.

PGAbB

gsaNA for Med. TC
Emu

- T

Lux

GBTL-Cuda

MultiGraph

%

Distributed Memory Shared Memory

(Contributions of this work) Q:rameworks in our experiments)

Easy

Frameworks in Our Experiments

GAPBS: Beamer, et al., 2015. “The GAP benchmark suite.”, ArXiV

Galois: Kulkarni, et al. 2007. “Optimistic parallelism requires
abstractions”. PLDI

Ligra: Shun and Blelloch. 2013. “Ligra: a lightweight graph
processing framework for shared memory”. PPoPP

LAGraph: Davis. 2019. “Algorithm 1000: SuiteSparse: GraphBLAS:
Graph algorithms in the language of sparse linear algebra”, TOMS

Ease of Productivity (with Restricted APIs)

Galois-GPU: Martin Burtscher, et al. 2012. “4 quantitative study of
irregular programs on GPUs”, ISWC

Gunrock: Wang, et al. 2016. "Gunrock: A high-performance graph
processing library on the GPU”. PPoPP

Hard

PR YT Cetalyirek "mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA"32021 - Novis,2021 24

Experimental Setup

o Power9 (2 x 16 x 4) CPUs with 2 Voltal00 GPUs.
o 320 GB Host Memory. 32 GB Device Memory.
o CPU-GPU bandwidth: ~60GB/s

o Dataset: 44 graphs (real-world and synthetic), 100M-2.1B Edges
o SuiteSparse, Konect, Snap
o Converted to undirected and removed self-loops, duplicate edges.
o In this talk: We are going to cover 7 of them in detail

o Algorithms: SV/LP, Best CC, PR, BES, TC
o PGADB: Kokkos at the backend with OpenMP (Host) and Cuda (Device)

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

Selected Dataset

Number of Number of Number of Clustering
Graph Vertices Edges Triangles Coefficient
Twitter7 416 M 1.2B 34.8 B 0.001
Com-Orkut 3 M 117 M 627 M 0.041
Sk-2005 50.6 M 1.8B 84.9B 0.002
Europe- 50.9 M 54.1 M 61 K 0.003
OSM
Myciel.19 393 K 451 M 0 0
Kron- 2.1 M 91 M 8.8 B 0.044
Scale21

PR TP Cetalyirek "mplementing Performance Portable Graph Algorithms Using Task-Based Execution® IA'32021 - Novis,2021 26

Experiments on Selected Graphs

A TDAlab

Social

‘Web

Gene

Road

Synthetic

twitter7

| Orkut

sk-2005

kmer Vir

eu_osm

myciel19 |

kron21

Galois

PR
SV/LP
cC
BFS
TC

0.83

0.84

0.69

1.01
1.71
1.56
0.59
1.06

1.01
1.68
0.98

0.63

0.89
2.29
0.64

0.90

1.03
1.81
0.64
2.14
1.21

Ligra

PR
SV/LP
cC
BFS
TC

0.60

0.78
1.12
0.81

LAGraph

PR
SV/LP
CcC
BEFS
TC

Galois-GPU

PR
SV/LP
cC
BES
TC

Gunrock

PR
SV/LP
CcC
BFS
TC

PGAbB

Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

PR
SV/LP
CcC
BFS
TC

1.91
0.90
1.11

2.40
1.00
5.39

IAA3 2021 - Nov 15, 2021

Overall Comparison

o GAPBS + Ligra = Galois-GPU * PGAbB
v Galois * LAGraph # Gunrock

Relative number of test instances

2 4 6 8 10
Proximity to the best performing method
PGADB performs 1.6x to 5.7x better than state-of-the-art in the median.

Galois performs the second. GAPBS performs the third.

A TDAlab

Conclusion and Future Work

In this work we proposed PGAbB which provides

o an easy block-based programming model for leveraging heterogenous
architectures.

o computation and data partitioning strategies for maximal usage of the available
resources.

o simple and effective scheduling strategies for CPU and/or GPU processing of
different graph kernels.

We are currently working on:

o Simplifying the user API.

o Memory hierarchy aware smarter block fetching.
o Open-source software release.

o Future work: Hypergraph-based locality aware different scheduling policies.

4TDA|ab Catalyurek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" IA23 2021 - Nov 15, 2021

TDAlab Members and Collaborators

Triangle Count / PGAbB

Abdurrahman Sivasankaran Jonathan
Yasar Rajamanickam Berry

Current TDAlab Members

S W

Umit V. Abdurrahman Yusuf Kasimir Xiaojing James Kaan Fatih Benjamin
Catalytrek Yasar Ozkaya Gabert An Fox Sancak Balin Cobb

A TDAlab

For more information

email umit@gatech.edu

Visit tda.gatech.edu

Acknowledgement of Support

Sandia
National
Laboratories

mailto:umit@gatech.edu
http://tda.gatech.edu/

