
TDAlab

Implementing Performance Portable
Graph Algorithms Using Task-Based
Execution
Ümit V. Çatalyürek
Georgia Institute of Technology & Amazon Web Services*

Joint work with
Abdurrahman Yaşar, Georgia Institute of Technology & NVIDIA
Sivasankaran Rajamanickam & Jonathan Berry, Sandia National Laboratories

* This presentation describes work performed at Georgia Tech and is not associated with Amazon.

TDAlab

Graphs are Ubiquitous

They are growing. Up to billions of vertices and edges

Fast, efficient analysis is important and pervasive

Many graph processing frameworks have been proposed

Albert-László Barabási/BarabasiLab 2019
Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011 Caleb Jonson, How to Visualize Your Twitter Network, 2014
Jenn Caulfield, Social network vector illustration, 2018

Image credits:

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 2

TDAlab

Heterogeneous Systems are Here

More are coming…

A Single Computing Node

Our current target environment

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 3

TDAlab

The Crux

How can we develop efficient parallel graph algorithms that run well on shared-memory
and heterogeneous systems as well as distributed-memory systems?

D
at

a/
C

om
pu

ta
tio

n
Pa

rt
iti

on
in

g

Pe
rf

or
m

an
ce

 P
or

ta
bi

lit
y

Bl
oc

k-
Ba

se
d

A
lg

. D
es

ig
n

Parallel Graph Algorithms by Block
(PGAbB)

Block-based graph algorithms offer a good compromise between
efficient parallelism and architecture agnostic algorithm design

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 4

TDAlab

Design Goals of PGAbB

We have three design goals:

oAn expressive programming model
oExecute graph kernel operations on different architectures.

o Combine the results coming from different architectures
oAddress major efficient parallel graph algorithm implementation

challenges at behind the scenes.

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 5

TDAlab

System Overview

I/O Handler

Layout Manager
Partitioner

Scheduler
Parallel

Dispatch
Data

Structures

PGAbB API

An Overview of PGAbB

PIGO

SARMA

https://github.com/GT-TDAlab/PIGO https://github.com/GT-TDAlab/SARMA
IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 6

TDAlab

Algorithm Design Steps

Block List
Composition

Attribute
Assignment

Execution
Handling

Kernel
Development

PG, PC PGAbB API KH , KDIB , IA, E
Generic and Custom

Block-List Generators.
Host and Device

Kernels
Before

Iter.
After
Iter.

WorkEs
tim.

Required Optional

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 7

TDAlab

Execution Flow

L0 L1 L2 L3 L4 L5B0 B1 B2

B3 B4 B5

B6 B7 B8 L0L1 L2L3 L4L5

CPUCPUGPU

KH(L4)KH(L2)

KD(L5)

KD(L1)

KD(L3)

KD(L0)

STOP

ST
A

RT

F
A
L
S
E

T
R
U
E

I/O Handling

Block List Composition

Scheduling

Symmetric
Partitioner

Layout Management

IA

PG IB

Sorting; E

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 8

L0 L1 L2 L3 L4 L5B0 B1 B2

B3 B4 B5

B6 B7 B8 L0L1 L2L3 L4L5

CPUCPUGPU

KH(L4)KH(L2)

KD(L5)

KD(L1)

KD(L3)

KD(L0)

STOP

ST
A

RT

F
A
L
S
E

T
R
U
E

I/O Handling

Block List Composition

Scheduling

Symmetric Partitioner

Layout Management

IA

PG IB

Sorting; E

TDAlab

Toy Graph

0

1

2

3

4

5

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 9

TDAlab

Symmetric Rectilinear Partitioning

o Restricted rectilinear partitioning:
o Can be obtained by aligning the same partition vector to rows and columns.
o We showed this problem is NP-Complete too.
o We proposed several heuristics and optimizations.

o PGAbB can be used with 1D and 2D partitioning. We will use 2D symmetric
partitioning in this talk.

A simple example

T0,0

T1,1

T2,2

T0,1 T0,2

T1,2

T2,1T2,0

T1,0

T0,0

T1,1

T2,2

T0,1 T0,2

T1,2

T2,1T2,0

T1,0

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 10

TDAlab

Block

A block (𝐵!) : Set of edges.

Graph, 𝐺 = ∪ 𝐵! , and ∩ 𝐵! = ∅

𝐵" = { 0,1 , 0,2 , 1,0 , 2,0 }
𝐵# = { 1,3 , 1,4 , 2,3 }
𝐵$ = { 3,1 , 3,2 , 4,1 }
𝐵% = { 3,4 , 3,5 , 4,3 , 4,5 , 5,3 , 5,4 }

𝐵! 𝐵"

𝐵#𝐵$
IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 11

TDAlab

Block List

Block list (L& = ⟨𝐵! , 𝐵#, . . , 𝐵'⟩) : list of
ordered block references based on a
rule.

L" = ⟨𝐵", 𝐵#⟩
L# = ⟨𝐵#, 𝐵$⟩

L" = ⟨𝐵"⟩
L# = ⟨𝐵#, 𝐵%⟩
L$ = ⟨𝐵", 𝐵$, 𝐵%⟩
L% = ⟨𝐵%⟩

𝐵! 𝐵"

𝐵#𝐵$
Combined Example Generalized Example

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 12

TDAlab

Categorizing Graph Algorithms

Single Block
Bulk Sync.

Activation
Based

Multi Block
Pattern Based

PageRank

HITS

Afforest

Shiloach-Vishkin

kCore

Dijkstra

BFS

MiniTri

kTruss

Jaccard Rank

Floyd-Warshall

Triangle
Counting

Butterfly
Counting

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 13

TDAlab

Kernel

A kernel is functor that takes a block list as input

𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘 = ⋃!PR 𝐵!PR

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 14

TDAlab

Task

A task, 𝑇! , is defined with a kernel that operates on a block list.

PR PR PR PR

𝑇" 𝑇# 𝑇$ 𝑇%

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 15

TDAlab

Attributes

𝐵! 𝐵"

𝐵#𝐵$

Vertex Edge Global

Diagonal blocks Blocks Custom

Ref. to Source
and Destination Self Custom

Reduction
Methods

Reduction
Methods Custom

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 16

TDAlab

Implemented Algorithms

Block-List Attribute Before
Iter.

After Iter. Host & Device Kernels

PageRank Single-
Block

Vertex - Check Err. 𝑅𝑎𝑛𝑘 𝑆𝑢𝑚 → 𝑆𝑐𝑜𝑟𝑒 𝐶𝑜𝑚𝑝.

Shiloach-
Vishkin

Single-
Block

Global:
Array,

counter

Reset
Counter

Check
counter

𝐻𝑜𝑜𝑘 → 𝐿𝑖𝑛𝑘

Afforest Single-
Block

Global:
Array

- - Sample → 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 →
𝐶𝑜𝑛𝑛𝑒𝑐𝑡 → 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

BFS Activation Global:
Queues

- Check
Queue

Top-Down and/or Bottom-
Up BFS

Triangle
Counting

Multi-Block Global:
Counter var.

- - List Intersection

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 17

TDAlab

Triangle Counting Problem

Count mutually connected 3 vertices: u, v, w

u v

w

Where u < v < w

u

v

v w

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 18

Triangle Counting Problem: Find the number
of three-cycles (triangles) in an undirected
graph G.

Important kernel which forms the core of;
o community detection,
o dense sub-graph discovery,
o k-truss decomposition,
o sub-graph isomorphism etc.

TDAlab

Partitioning and Task Construction

u

v

v w
2D Partitioning

Cartesian Symmetric Rectilinear

(u,v) in B0,1
(v,w) in B1,2
(u,w) in B0,2

Block List: Triple of Blocks

Bi,j – Bj,k – Bi,k

𝑖 ≤ 𝑗 ≤ 𝑘

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 19

B0,1 B0,2

B1,2

TDAlab

How to Compose Task List

T0,2

T1,1

T1,2

T1,2

T2,2

13

3

12

9

11

15

14

12

19

20

Task list composition.

Workload estimation.

4

9

6

8

7

2

3

5

1

0

Sorting task list

A Task: 𝐿𝐼(⟨ 𝐵𝑖, 𝑗, 𝐵𝑗, 𝑘, 𝐵𝑖, 𝑘 ⟩)

B0,0 B0,0 B0,0

B0,0 B0,1 B0,1

B0,0 B0,2 B0,2

B0,1 B1,1 B0,1

B0,1 B1,2 B0,2

B0,2 B2,2 B0,2

B1,1 B1,1 B1,1

B1,1 B1,2 B1,2

B1,2 B2,2 B1,2

B2,2 B2,2 B2,2

B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

B2,0 B2,1 B2,2

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 20

TDAlab

Hybrid Execution

Task
0

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Execution Queue

Heavier Tasks: GPU Lighter Tasks: CPU
from heavier to lighter from lighter to heavier

0110
10 10 10

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 21

TDAlab

Sequential Execution Time Comparison in CPU

Even sequential bbTC outperforms other algorithms in all graph instances.

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 22

bbTC [TPDS’21] is available at
http://github.com/GT-TDAlab/bbTC

Latapy
Latapy; “Main-memory triangle computations for very large
(sparse (power-law)) graphs”; TCS’08.

TCM
Shun and Tangwongsan; “Multicore triangle computations
without tuning”; ICDE’15.

kkTri
Wolf et al.; “Fast linear algebra-based triangle counting
with kokkoskernels”; HPEC’17.

TriCore (will be used next slide)
Liu et al.; “Tricore: Parallel triangle counting on
gpus”; SC'18

http://github.com/GT-TDAlab/bbTC

TDAlab

Comparison with the state-of-the-art

Running on a system with 2 x
Power9 + 2 V100s

Even bbTC-GPU outperforms fastest
GPU code TriCore*

*TriCore starts everything in GPU memory, and it is highly
unstable: deviates up to 40%.

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 23

TDAlab

Related Work

X-Stream

Edge-Centric

Chaos

Vertex-Centric

Pregel GraphLab

GraphChi Ligra

Linear-Algebra Based

PEGASUS

GraphBlasGraphPad

Block-Centric

Giraph++ Blogel

GoFFish

Gunrock Medusa

GTS

MapGraph Cusha

LuxGaraph Totem

GraphMat

GBTL-Cuda

MultiGraph

Hard

Easy

Ea
se

 o
f P

ro
du

ct
ivi

ty
 (w

ith
 R

es
tri

ct
ed

 A
PI

s)

PGAbB

CPU-Based Hybrid GPU-Based

Hand-Optimized

Distributed Memory Shared Memory Out-of-Core

… … … … … …

gsaNA and
SiNA

Coarse TC

Med. TC

gsaNA for
Emu Med. TC

Contributions of this work

LAGraph

GAPBS

Frameworks in our experiments

Galois
Galois-GPU GAPBS: Beamer, et al., 2015. “The GAP benchmark suite.”, ArXiV

Galois-GPU: Martin Burtscher, et al. 2012. “A quantitative study of
irregular programs on GPUs”, IISWC

LAGraph: Davis. 2019. “Algorithm 1000: SuiteSparse: GraphBLAS:
Graph algorithms in the language of sparse linear algebra”, TOMS

Galois: Kulkarni, et al. 2007. “Optimistic parallelism requires
abstractions”. PLDI

Ligra: Shun and Blelloch. 2013. “Ligra: a lightweight graph
processing framework for shared memory”. PPoPP

Gunrock: Wang, et al. 2016. ”Gunrock: A high-performance graph
processing library on the GPU”. PPoPP

Frameworks in Our Experiments

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 24

TDAlab

Experimental Setup

oPower9 (2 x 16 x 4) CPUs with 2 Volta100 GPUs.
o 320 GB Host Memory. 32 GB Device Memory.
o CPU-GPU bandwidth: ~60GB/s

oDataset: 44 graphs (real-world and synthetic), 100M-2.1B Edges
o SuiteSparse, Konect, Snap
o Converted to undirected and removed self-loops, duplicate edges.
o In this talk: We are going to cover 7 of them in detail

oAlgorithms: SV/LP, Best CC, PR, BFS, TC
o PGAbB: Kokkos at the backend with OpenMP (Host) and Cuda (Device)

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 25

TDAlab

Selected Dataset

Graph
Number of

Vertices
Number of

Edges
Number of

Triangles
Clustering
Coefficient

Twitter7 41.6 M 1.2 B 34.8 B 0.001
Com-Orkut 3 M 117 M 627 M 0.041
Sk-2005 50.6 M 1.8 B 84.9 B 0.002
Kmer_V1r 214 M 232 M 49 0.000
Europe-
OSM

50.9 M 54.1 M 61 K 0.003

Myciel.19 393 K 451 M 0 0
Kron-
Scale21

2.1 M 91 M 8.8 B 0.044

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 26

TDAlab

Experiments on Selected Graphs881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

PGAbB PPoPP’22, February 12–16, 2022, Seoul, South Korea

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Table 1. Speedups over the GAPBS reference implementation. Each cell represents a framework’s speedup on a graph and a
graph algorithm. Heat map indicates where speedup is lower (RED < 1.0), equal (WHITE = 1.0) or higher (GREEN > 1.0).

Social Web Gene Road Synthetic
twitter7 Orkut sk-2005 kmer_V1r eu_osm myciel19 kron21

G
al
oi
s

PR 0.83 1.01 1.01 0.89 1.03 6.96 0.78
SV/LP 8.40 1.71 1.68 2.29 1.81 1.25 1.12
CC 0.84 1.56 0.98 0.64 0.64 2.94 0.81
BFS 0.26 0.59 0.46 0.34 2.14 0.39 0.18
TC 0.69 1.06 0.63 0.90 1.21 0.44 0.40

Li
gr
a

PR 0.39 0.60 0.99 0.43 0.53 2.59 0.72
SV/LP 1.24 0.70 1.05 0.18 0.02 0.58 0.66
CC 0.02 0.04 0.00 0.02 0.01 0.03 0.02
BFS 0.61 0.67 0.93 0.68 0.16 1.37 0.82
TC 0.31 0.35 0.12 0.30 0.17 0.43 0.69

LA
G
ra
ph

PR 0.75 0.98 0.60 0.75 0.65 3.21 0.71
SV/LP 14.24 1.64 0.89 0.30 0.13 7.70 0.92
CC 0.17 0.21 0.12 0.14 0.05 0.27 0.09
BFS 0.79 0.33 0.77 0.27 0.33 0.75 0.30
TC 0.38 0.87 0.66 0.29 0.16 0.52 0.37

G
al
oi
s-
G
P
U PR 0.00 2.72 0.00 1.01 1.49 12.12 1.62

SV/LP 0.00 3.67 0.00 2.43 2.71 2.65 1.57
CC 0.00 0.46 0.00 1.16 0.99 0.09 0.15
BFS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TC 1.03 0.85 0.90 0.00 0.00 0.38 0.65

G
un

ro
ck

PR 0.00 1.28 0.00 1.44 1.34 5.42 0.97
SV/LP 0.00 1.88 0.00 3.18 1.22 3.90 0.97
CC 0.00 0.24 0.00 1.51 0.44 0.14 0.09
BFS 4.61 1.48 0.00 3.59 0.80 3.45 5.73
TC 0.00 0.74 0.00 0.04 0.02 0.29 0.23

PG
A
bB

PR 4.64 4.67 0.80 0.53 0.64 10.76 1.79
SV/LP 18.02 5.95 1.90 5.73 2.95 7.70 1.98
CC 1.25 1.53 2.14 1.91 0.96 2.40 0.87
BFS 0.16 0.89 0.77 0.90 0.33 1.00 0.29
TC 3.02 3.01 1.69 1.11 3.91 5.39 3.48

5.1.2 Shiloach-Vishkin or Label Propagation algorithms.
In this experiment, we are going to evaluate performances of
SV (Shiloach-Vishkin) or LP (Label Propagation) algorithm
implementations in di�erent systems. Because, some sys-
tems provide an implementation of SV algorithm and some
LP algorithm. Both algorithms have similar execution prin-
ciples. The main di�erence between those two algorithms is
the upper bound of the number of iterations: SV algorithm’s
iteration bound is O (log(|V |)) and LP algorithms iteration
bound is O (D) where D is the diameter of the graph. SV al-
gorithm’s compression step causes this di�erence. Gunrock
and Ligra implement LP algorithm. The other systems imple-
ment SV algorithm. LAGraph implements an optimized SV
algorithm [54] which can converge faster on some graphs.

To achieve better performance, PGAbB executes hooking
step in the GPU and linking step in CPUs. Between those
steps PGAbB synchronizes the component array (a global

attribute). That synchronization cost is included in the re-
ported execution times.
Galois-GPU and Gunrock fail to process the largest twit-

ter7 and sk-2005 graphs, due to device memory limitations.
PGAbB performs the best. Galois, and Gunrock have the
second and the third best performances. Ligra’s poor perfor-
mance has two reasons; more number of iterations (LP algo-
rithm) and imbalance between computational loads. OpenMP
might be the cause of the latter reason, because Ligra is pri-
marily designed using Cilk.

On the complete dataset; inmedian, PGAbB performs 3.9⇥,
2.0⇥, 20.0⇥, 3.9⇥, 1.4⇥, and 1.9⇥ better than GAPBS, Galois,
Ligra, LAGraph Galois-GPU, and Gunrock respectively.
5.1.3 Best connected-components algorithm. In this
experiment, we are going to evaluate performances of best
performing connected component algorithm implementa-
tions in di�erent systems. GAPBS, Galois and PGAbB imple-
ment A�orest algorithm [46]. Ligra implements low-diameter

9

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 27

TDAlab

Overall Comparison

PGAbB performs 1.6x to 5.7x better than state-of-the-art in the median.

Galois performs the second. GAPBS performs the third.

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 28

TDAlab

Conclusion and Future Work

In this work we proposed PGAbB which provides
o an easy block-based programming model for leveraging heterogenous

architectures.
o computation and data partitioning strategies for maximal usage of the available

resources.
o simple and effective scheduling strategies for CPU and/or GPU processing of

different graph kernels.

We are currently working on:
o Simplifying the user API.
o Memory hierarchy aware smarter block fetching.
o Open-source software release.
o Future work: Hypergraph-based locality aware different scheduling policies.

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 29

TDAlab

TDAlab Members and Collaborators

IA^3 2021 - Nov 15, 2021Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution" 30

Current TDAlab Members

Sivasankaran
Rajamanickam

Jonathan
Berry

Fatih
Balin

Kaan
Sancak

Xiaojing
An

Ümit V.
Çatalyürek

Abdurrahman
Yaşar

Triangle Count / PGAbB

Yusuf
Özkaya

Kasimir
Gabert

James
Fox

Benjamin
Cobb

Abdurrahman
Yaşar

TDAlab

Thanks

§ For more information

§ email umit@gatech.edu

§ Visit tda.gatech.edu

§ Acknowledgement of Support

parallel graph

IA^3 2021 - Nov 15, 2021 31Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

mailto:umit@gatech.edu
http://tda.gatech.edu/

