Implementing Performance Portable Graph Algorithms Using Task-Based Execution

Ümit V. Çatalyürek Georgia Institute of Technology & Amazon Web Services*

Joint work with

Abdurrahman Yaşar, Georgia Institute of Technology & NVIDIA

Sivasankaran Rajamanickam & Jonathan Berry, Sandia National Laboratories

* This presentation describes work performed at Georgia Tech and is not associated with Amazon.

Graphs are Ubiquitous

They are growing. Up to billions of vertices and edges

Fast, efficient analysis is important and pervasive

Many graph processing frameworks have been proposed

Image credits:

TDAlab

Jenn Caulfield, Social network vector illustration, 2018 Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011 Albert-László Barabási/BarabasiLab 2019 Caleb Jonson, How to Visualize Your Twitter Network, 2014

Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

IA^3 2021 - Nov 15, 2021

Heterogeneous Systems are Here

A Single Computing Node

The Crux

How can we develop efficient parallel graph algorithms that run well on **shared-memory and heterogeneous systems** as well as distributed-memory systems?

Block-based graph algorithms offer a good compromise between efficient parallelism and architecture agnostic algorithm design

We have three design goals:

• An expressive programming model

Execute graph kernel operations on different architectures.
Combine the results coming from different architectures

 Address major efficient parallel graph algorithm implementation challenges at behind the scenes.

An Overview of PGAbB

https://github.com/GT-TDAlab/PIGO

https://github.com/GT-TDAlab/SARMA

TDAlab Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

Algorithm Design Steps

Required

Optional

Execution Flow

Toy Graph

TDAlab Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution

Symmetric Rectilinear Partitioning

A simple example

• Restricted rectilinear partitioning:

• Can be obtained by aligning the same partition vector to rows and columns.

• We showed this problem is **NP-Complete** too.

• We proposed several heuristics and optimizations.

• PGAbB can be used with 1D and 2D partitioning. We will use 2D symmetric partitioning in this talk.

Block

Block List

Categorizing Graph Algorithms

A kernel is functor that takes a block list as input

$$PageRank = \bigcup_{i} PR(\langle B_i \rangle)$$

A task, T_i , is defined with a kernel that operates on a block list.

Attributes

Implemented Algorithms

	Block-List	Attribute	Before Iter.	After Iter.	Host & Device Kernels
PageRank	Single- Block	Vertex	_	Check Err.	Rank Sum → Score Comp.
Shiloach- Vishkin	Single- Block	Global: Array, counter	Reset Counter	Check counter	$Hook \rightarrow Link$
Afforest	Single- Block	Global: Array	-	-	Sample \rightarrow Compress \rightarrow Connect \rightarrow Compress
BFS	Activation	Global: Queues	_	Check Queue	Top-Down and/or Bottom- Up BFS
Triangle Counting	Multi-Block	Global: Counter var.	_	-	List Intersection

Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

Triangle Counting Problem: Find the number of three-cycles (triangles) in an undirected graph G.

Important kernel which forms the core of;

- o community detection,
- o dense sub-graph discovery,
- o k-truss decomposition,
- sub-graph isomorphism etc.

Count mutually connected 3 vertices: u, v, w

TDAlab Çatalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

Partitioning and Task Construction

How to Compose Task List

A Task: $LI(\langle B_{i,j}, B_{j,k}, B_{i,k}\rangle)$

Task list composition.

Workload estimation.

Sorting task list

Heavier Tasks: GPU from heavier to lighter

Lighter Tasks: CPU from lighter to heavier

Execution Queue

Sequential Execution Time Comparison in CPU

Even sequential bbTC outperforms other algorithms in all graph instances.

Comparison with the state-of-the-art

Running on a system with 2 x Power9 + 2 V100s

Even bbTC-GPU outperforms fastest GPU code TriCore*

*TriCore starts everything in GPU memory, and it is highly unstable: deviates up to 40%.

Related Work

Frameworks in Our Experiments

GAPBS: Beamer, et al., 2015. "The GAP benchmark suite.", ArXiV

Galois: Kulkarni, et al. 2007. "Optimistic parallelism requires abstractions". PLDI

Ligra: Shun and Blelloch. 2013. "Ligra: a lightweight graph processing framework for shared memory". PPoPP

LAGraph: Davis. 2019. *"Algorithm 1000: SuiteSparse: GraphBLAS:* Graph algorithms in the language of sparse linear algebra", TOMS

Galois-GPU: Martin Burtscher, et al. 2012. "A quantitative study of irregular programs on GPUs", IISWC

Gunrock: Wang, et al. 2016. "Gunrock: A high-performance graph processing library on the GPU". PPoPP

Catalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

• Power9 (2 x 16 x 4) CPUs with 2 Volta100 GPUs.

- 320 GB Host Memory. 32 GB Device Memory.
- O CPU-GPU bandwidth: ~60GB/s

• Dataset: 44 graphs (real-world and synthetic), 100M-2.1B Edges

- SuiteSparse, Konect, Snap
- Converted to undirected and removed self-loops, duplicate edges.
- In this talk: We are going to cover 7 of them in detail

• Algorithms: SV/LP, Best CC, PR, BFS, TC

• PGAbB: Kokkos at the backend with OpenMP (Host) and Cuda (Device)

Graph	Number of Vertices	Number of Edges	Number of Triangles	Clustering Coefficient
Twitter7	41.6 M	1.2 B	34.8 B	0.001
Com-Orkut	3 M	117 M	627 M	0.041
Sk-2005	50.6 M	1.8 B	84.9 B	0.002
Kmer_V1r	214 M	232 M	49	0.000
Europe- OSM	50.9 M	54.1 M	61 K	0.003
Myciel.19	393 K	451 M	0	0
Kron- Scale21	2.1 M	91 M	8.8 B	0.044

Experiments on Selected Graphs

		Social		Web	Gene	Road Synthetic		hetic
		twitter7	Orkut	sk-2005	kmer_V1r	eu_osm	myciel19	kron21
Galois	PR	0.83	1.01	1.01	0.89	1.03	6.96	0.78
	SV/LP	8.40	1.71	1.68	2.29	1.81	1.25	1.12
	CC	0.84	1.56	0.98	0.64	0.64	2.94	0.81
	BFS	0.26	0.59	0.46	0.34	2.14	0.39	0.18
	TC	0.69	1.06	0.63	0.90	1.21	0.44	0.40
Ligra	PR	0.39	0.60	0.99	0.43	0.53	2.59	0.72
	SV/LP	1.24	0.70	1.05	0.18	0.02	0.58	0.66
	CC	0.02	0.04	0.00	0.02	0.01	0.03	0.02
	BFS	0.61	0.67	0.93	0.68	0.16	1.37	0.82
	TC	0.31	0.35	0.12	0.30	0.17	0.43	0.69
LAGraph	PR	0.75	0.98	0.60	0.75	0.65	3.21	0.71
	SV/LP	14.24	1.64	0.89	0.30	0.13	7.70	0.92
	CC	0.17	0.21	0.12	0.14	0.05	0.27	0.09
	BFS	0.79	0.33	0.77	0.27	0.33	0.75	0.30
	TC	0.38	0.87	0.66	0.29	0.16	0.52	0.37
U	PR	0.00	2.72	0.00	1.01	1.49	12.12	1.62
GP	SV/LP	0.00	3.67	0.00	2.43	2.71	2.65	1.57
is-(CC	0.00	0.46	0.00	1.16	0.99	0.09	0.15
ole	BFS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ğ	TC	1.03	0.85	0.90	0.00	0.00	0.38	0.65
Junrock	PR	0.00	1.28	0.00	1.44	1.34	5.42	0.97
	SV/LP	0.00	1.88	0.00	3.18	1.22	3.90	0.97
	CC	0.00	0.24	0.00	1.51	0.44	0.14	0.09
	BFS	4.61	1.48	0.00	3.59	0.80	3.45	5.73
•	TC	0.00	0.74	0.00	0.04	0.02	0.29	0.23
PGAbB	PR	4.64	4.67	0.80	0.53	0.64	10.76	1.79
	SV/LP	18.02	5.95	1.90	5.73	2.95	7.70	1.98
	CC	1.25	1.53	2.14	1.91	0.96	2.40	0.87
	BFS	0.16	0.89	0.77	0.90	0.33	1.00	0.29
	TC	3.02	3.01	1.69	1.11	3.91	5.39	3.48

talyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

Overall Comparison

PGAbB performs 1.6x to 5.7x better than state-of-the-art in the median.

Galois performs the second. GAPBS performs the third.

Conclusion and Future Work

In this work we proposed PGAbB which provides

- an easy block-based programming model for leveraging heterogenous architectures.
- computation and data partitioning strategies for maximal usage of the available resources.
- simple and effective scheduling strategies for CPU and/or GPU processing of different graph kernels.

We are currently working on:

- Simplifying the user API.
- Memory hierarchy aware smarter block fetching.
- Open-source software release.
- Future work: Hypergraph-based locality aware different scheduling policies.

Catalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

TDAlab Members and Collaborators

Triangle Count / PGAbB

Abdurrahman Sivasankaran Jonathan Rajamanickam Berry Yaşar

Current TDAlab Members

Ümit V. Çatalyürek

Abdurrahman Yaşar

Kasimir Gabert

Xiaojing An

James Fox

Sancak

Fatih

Balin

Benjamin Cobb

Catalyürek "Implementing Performance Portable Graph Algorithms Using Task-Based Execution"

Yusuf

Özkaya

Thanks

- For more information
 - email <u>umit@gatech.edu</u>
 - Visit <u>tda.gatech.edu</u>

Acknowledgement of Support

