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1Department of Biomedical Informatics
2Department of Electrical and Computer Engineering

The Ohio State University

September 22, 2011

Abstract

The development of next-generation sequencing instruments has lead to the generation of

millions of short sequences in a single run. The process of aligning these reads to a reference

genome is time consuming and demands the development of fast and accurate alignment tools.

However, the current proposed tools make different compromises between the accuracy and

the speed of mapping. Moreover, many important aspects are overlooked when comparing

the performance of a newly developed tool to the state of the art. Therefore, there is a need

for an objective evaluation method that covers the various aspects. In this work, we intro-

duce a benchmarking suite to extensively analyze various tools with respect to the different

comparison aspects and provide an objective comparison. In order to assess our work, we

applied our benchmarking tests on seven well known mapping tools, namely, Bowtie, BWA,

SOAP, MAQ, RMAP, GSNAP, and FANGS. Bowtie, BWA, SOAP, GSNAP, and FANGS are

based on indexing the reference genome, whereas MAQ and RMAP are based on building

hash tables for the reads. It is shown that the benchmarking tests reveal the strengths and

weaknesses of each tool. In addition, the tests can be further applied to other tools. The

results show that there is no clear winner. However, Bowtie maintained the best throughput

for most of the tests while BWA performed better for longer read lengths.

1 Introduction

Next-generation sequencing (NGS) technology has evolved rapidly, leading to the generation of
hundreds of millions of sequences (reads) in a single run. The number of generated reads varies
between 1 million for long reads (≈400 bps) and 2.4 billion for short reads (≈75 bps). Effi-
cient alignment (mapping) of this large amount of reads with high accuracy is a crucial part in
many applications’ workflow such as genome resequencing [1], DNA methylation [2], RNA-seq,
and ChIP sequencing. To undertake this challenging task, numerous tools have been developed,
including MAQ [3], RMAP [4], GSNAP [5], Bowtie [6], BWA [7], SOAP [8], Mosaik1, FANGS [9],
SHRIMP [10] and Novoalign2. However, due to using different mapping techniques, each tool
provides different trade-offs between speed and quality of the results. For instance, quality is
often compromised in the following ways to reduce runtime:

• Neglecting base quality score.

• Limiting the number of allowed mismatches.

1http://bioinformatics.bc.edu/marthlab/Mosaik
2http://www.novocraft.com
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• Disabling gapped alignment or limiting the gap length.

• Ignoring SNP information.

In most cases, it is unclear how such compromises affect the performance of newly developed
tools in comparison to the state of the art tools. In addition, in most of the previous studies
(e.g., [5] , [7], [11], and [12]), either the default options were only used or only one comparison
aspect was considered. Moreover, the main aim of these studies was providing new tools rather
than providing a thorough comparison. Therefore, there is a need for a quantitative evaluation
method to systematically compare mapping tools in different aspects. In this paper, we tackle
this problem and present a benchmarking suite to evaluate and understand the strengths and
weaknesses of each tool. The set of tests provided in this suite cover a variety of input properties
and algorithmic features. Input properties refer to the type of the reference genome and the
properties of the reads including their length and source. Algorithmic features, on the other hand,
pertain to the features provided by the mapping tool regarding its performance and utility. To
assess our work, we apply these tests on six well known short sequence mapping tools, namely,
Bowtie, BWA, SOAP, MAQ, RMAP, and GSNAP. Moreover, we compare the performance of
these tools with that of FANGS, a long read mapping tool, to show their effectiveness in handling
long reads. The results of the benchmarking tests depend on the features provided by the tools
and the performance with default options. Therefore, in this paper, we will first present these
major points and show their effect on the comparison.

2 Methods

For most existing tools (and all the ones we consider), the mapping process starts by building an
index for the reference genome or the reads. Then, the index is used to find the corresponding
genomic positions for each read. The two most common techniques to build the index are based
on hash tables and the Burrows-Wheeler Transform [13]. In this section, we first give a brief
description of the two techniques. Then, we explain the features the tools support and the default
options setup.

Hash Tables: The hash based method is divided into two types: hashing the reads and hash-
ing the genome. In general, the main idea for both types is to build a hash table for subsequences
of the reads/genome. The key of each entry is a subsequence while the value is a list of positions
where the subsequence can be found. Tools based on hashing the reads include MAQ and RMAP
while GSNAP and FANGS are based on hashing the genome.

Burrows-Wheeler Transform (BWT): BWT [14] is an efficient data indexing technique
that maintains a relatively small memory footprint when searching through a given data block.
BWT was extended by Ferragina and Manzini [15] to a newer data structure, called FM-index,
to support exact matching. The FM-index is used in several recent short sequence mapping tools
such as BWA, Bowtie and SOAP. By transforming the genome into an FM-index, the lookup
performance of the algorithm improves for the cases where a single read matches multiple locations
in the genome. However, the improved performance comes with a significantly large index build
up time.

2.1 Features

Inexact matching of DNA sequences to a genome is a special case of string matching. Incorporating
known properties of DNA sequences and sequencing technologies brings additional complexity to
the mapping process. Such properties include:
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1. Seeding represents the first few tens of base pairs of a read. The seed part of a read is
expected to contain less erroneous characters due to the specifics of the NGS technologies.
Therefore, most tools use the seeding property to maximize performance and accuracy.

2. Base quality scores provide a measure on correctness of each character in the read. Some
tools use them to decide mismatch locations. Others accept or reject the read based on the
sum of the quality scores at mismatch positions.

3. Existence of indels necessitates inserting or deleting nucleotides when mapping a sequence
to a reference genome (gaps). The complexity of choosing a gap location increases with the
read length. Therefore, some tools do not allow any gaps while others limit their locations
and numbers.

4. Mate-pair (Paired-end) reads result from sequencing both ends of a DNA molecule. Map-
ping mate-pair reads increases the confidence in the mapping locations due to having an
estimation of the distance between the two ends.

5. Color space reads are a different type of reads generated by SOLiD sequencers. Each base
is given a number (color) out of four numbers depending on the value of the previous base.
The reads can be converted into bases, however, performing the mapping in color space has
advantages in terms of error detection.

6. Splicing occurs when transcriptional reads are located across exon-exon junctions. It scatters
the two parts of the read up to a distance of 20000 bps. Detection of such long gaps is difficult
especially for short reads.

7. SNPs are variations of a single nucleotide between members of the same species. SNPs are
not mismatches. Therefore, their location should be identified before mapping reads in order
to correctly identify actual mismatch positions.

8. Bisulfite treatment is a method used for the study of the SP mythlation state of the DNA
[2]. In bisulfite treated reads, each unmethylated cytosine is converted to uracil. Therefore,
they require special handling in order to not misalign the reads.

A discussion related to these features can be found in [13]. In general, each tool supports only a
subset of the features. Moreover, there are differences in the way the features are handled, which
are explained in Table 1. For instance, BWA, SOAP, and GSNAP accept or reject an alignment
based on counting the number of mismatches between the read and the corresponding genomic
position. On the other hand, Bowtie and MAQ use a quality threshold to perform the same
function, where the quality threshold is the sum of base quality scores at mismatch positions. In
some cases, the features are partially supported. For example, SOAP supports gapped alignment
only for paired end reads, and BWA limits the gap size. Therefore, considering only one of the
above features when comparing between the tools would lead to under- or over-estimation of tools’
performance.

2.2 Default options

In general, using a tool’s default options yields good performance while maintaining a good out-
put quality. Most users use the tools with the default options or by only tweaking some of them.
Therefore, it is important to understand the effect of using these options and the kind of com-
promises made when using them. For the seven tools considered in this paper, the most crucial
default options are the following:

1. Maximum number of mismatches in the seed: all tools use a default value of 2.

3
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2. Maximum number of mismatches in the read: BWA and GSNAP determine it based on the
read length. It is 10 for RMAP and 5 for SOAP and FANGS.

3. Seed length: It is 24 for MAQ, 32 for RMAP, and 28 for Bowtie. BWA disables seeding
while SOAP considers the whole read as the seed.

4. Quality threshold: It is equal 70 for MAQ and Bowtie.

5. Splicing: This option is enabled for GSNAP.

6. Gapped alignment: It is enabled for GSNAP, BWA, and MAQ by default while it is disabled
for SOAP.

7. Minimum and maximum insert sizes for paired-end mapping: The insert size represents the
distance between the two ends. The values used for the minimum and the maximum insert
sizes are 0 and 250 for Bowtie, 0 and 500 for BWA, 400 and 500 for SOAP, 0 and 250 for
MAQ, and 100 and 400 for RMAP.

Each tool has different default values, thus leading to different results for the same data set.
Hence, using the same values when comparing between the tools is important.

2.3 Features to be tested

In this section, we present the features covered by our benchmarking suite. In addition, we
explain how they were previously addressed by the tools we mention in this paper. However, two
algorithmic features, namely SNPs and Splicing awareness, are not presented in the results section
due to being supported only by one tool. The features are categorized as follows:

1. Mapping options

Quality threshold: MAQ and Bowtie use the quality threshold to determine the number of
allowed mismatches. Therefore, setting a quality threshold is similar to explicitly setting the
number of mismatches. However, there is no hard limit on the actual number of mismatches.
The impact of varying the quality threshold has not been studied before.

Number of mismatches: Changing the number of allowed mismatches affects the percent-
age of mapped reads. This effect was studied in [5], however, the mismatches were generated
uniformly on the genome which does not mimic real mismatches distribution.

Table 1: Features supported by each tool. PE.: paired-end only, mm.: mismatches, QS.: base
quality score, count: total count of mismatches in the read, and missed means not supported.

Bowtie BWA SOAP MAQ GSNAP RMAP FANGS

Seed mm. Up to 3 Any Up to 2 Any Any

Non-seed mm. QS Count Count QS Count Count Count

Var. seed len. > 5 Any > 28

Mapping qual. Yes Yes

Gapped align. Yes PE PE Yes Yes

Colorspace Yes Yes Yes

Splicing Yes

SNP tolerance Yes

Bisulfite reads Yes Yes
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Seed length: Seeding-based tools impose limits on the number of mismatches in the seed
part. As a result, increasing or decreasing the length of the seed part affects the percentage
of mapped reads. The effect of the seed length has not been studied in details before.

2. Input properties

Read length: The read length varies between 30bps for ABI’s SOLiD and Illumina’s Solexa
sequencers up to 500 bps for Roche’s 454. Therefore, the impact of read length should be
considered for throughput evaluation. Even though the effect of the read length is explored
in several studies, the default options were usually used leading to incomparable trade-offs.

Paired-end reads: Mapping paired reads requires the mapping of both ends within a max-
imum distance between them. Hence, it adds a constraint when finding the corresponding
genomic locations. Paired-end reads were only considered in analysis in [7].

Genome type: The efficiency of most algorithms are tested by using the Human genome
as the reference. However, each genome has its own properties such as the percentage of
repeated regions and ambiguous characters. Therefore, using a single genome does not reveal
the effect of these properties. To the best of our knowledge, BWA [7] was the only tool to
test its performance on different genomes.

3. Algorithmic features

Gapped alignment: is important for variant discovery due to the ability to detect indel
polymorphism [13]. Most of the tools support gapped alignment for paired-end reads while
GSNAP and BWA are the only tools to support it for single end reads. However, from the
results provided by the different tools, it is not obvious how gapped alignment affects the
performance.

SNP awareness: Incorporating SNP information into mapping allows considering minor
alleles as matches rather than mismatches. Currently, this feature is provided only by
GSNAP. It was shown in [5] that integrating SNP information affected around 8% of the
reads and allowed mapping 0.4% of unmapped reads.

Splicing awareness: Reads located cross exon-exon junctions would be wrongly aligned
using standard alignment algorithms. The only tool that currently supports splicing is
GSNAP. It was shown in [5] that the alignment yield increased by 8-9% when splicing
detection based on known splice junctions was introduced. However, there was only 0.3-
0.6% increase in case of detecting novel splice junctions.

4. Scalability

Mapping tools may show different scalability under different parallel settings. Many tools
support multithreading, which is expected to yield linearly increasing speedup with the
increase in the number of cpu cores. On the other hand, using multiprocesses is more
general and may improve the throughput even for tools that do not support multithread-
ing (e.g., MAQ and RMAP), where multiprocesses refers to using more than one process
in a distributed memory fashion that communicate through a message passaging inferace.
Scalability analysis had only been performed for Bowtie in a multi-threading setting.

3 Results and Discussion

In this section, we present results from our benchmarking tests. The experiments were performed
on a cluster of quad core AMD 2378 Opteron CPUs at 2.4 GHz and 34 GB of RAM. We used SOAP
v2.20, Bowtie v0.12.6, BWA v0.5.0, MAQ v0.7.0, RMAP v2.05.0, FANGS v0.2.3 and GSNAP
v2010-07-27. We evaluated the tools on synthetic single and paired-end data sets generated by
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Figure 1: Mapping 16 million reads of length 70 extracted from the Human genome. Each tool
was allowed to use its own default options.

wgsim3. In particular, the reads were generated with 0.09% SNP mutation rate, 0.01% indel
mutation rate, 2% uniform sequencing base error rate, and with a maximum insert size of 500,
which are the same parameters used in [7].

We evaluate the performance of the tools by considering two important factors: the mapping
percentage and the throughput. The mapping percentage is the percentage of reads each tool
maps while the throughput is the number of mapped base pairs per second. In addition, we report
the percentage of the suboptimal (subopt) hits and the ambiguously mapped reads (amb). subopt
is the percentage of mapped locations violating the mapping criteria while amb is the percentage
of reads mapped to more than one location with the same number of mismatches.

First, we present the effect of the default options. The results for this experiment are given
in Figure 1. As stated previously, tools try to use the options that yield a good performance
while maintaining a good output quality. For instance, Bowtie achieves a throughput of around
3 · 105bps/s at the expense of mapping only 85% of the reads. On the other hand, BWA maps
91% of the reads at the expense of having a throughput of 0.4 · 105bps/s. However, using only
the default options to build our conclusions is misleading. Indeed, further experiments show that
BWA obtains a high throughput when allowed to use the same options as Bowtie. Moreover,
BWA achieves a higher throughput than Bowtie in other experiments. Therefore, it is important
to use the same options to truly understand how the tools’ behave.

In the remaining experiments, unless otherwise stated, the number of mismatches in the seed
and in the whole read are fixed to 2 and 5, respectively, while the quality threshold is 100. The
minimum and maximum insert sizes allowed are 0 and 500, respectively. In addition, the splicing,
SNPs, and gapped alignment options are disabled. For the number of reported hits, tools are only
allowed to report one location. The default values are used for the remaining options.

The experiments are divided as follows:

3.1 Mapping options

Quality threshold is one of the two main metrics used for mismatch tolerance. The other main
metric is the explicit specification of the number of mismatches. To compare fairly between the

3https://github.com/lh3/wgsim
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Figure 2: Mapping 1 million reads of length 125 while allowing up to 7 mismatches and a quality
threshold of 140. The subopt is 0.6% for SOAP and MAQ and 0.45 for GSNAP.

tools, a relationship between the two metrics should be found, which is the main target of this
experiment. In this experiment, a synthetic dataset with the same quality score for each base is
used instead of real dataset. The different base quality scores in real data cause Bowtie and MAQ
to allow more mismatches than the other tools. For instance, when allowing a quality threshold
of 70 and 5 mismatches for the remaining tools, Bowtie and MAQ map reads with up to 10
mismatches while the other tools are limited to 5. The results for this experiment are not shown
due to the space limitation. Nevertheless, in the following, we show how the tools map the reads
within the same maximum number of mismatches using synthetic data.

For synthetic data, quality thresholds of 60, 80, 100, 120, and 140 should correspond to 3, 4,
5, 6, and 7 mismatches. To assess our conclusion, we designed an experiment where all tools were
allowed a maximum of 7 mismatches while using a quality threshold of 140. Figure 2 shows that
the tools map the reads with the same maximum number of mismatches. Moreover, the mapping
rates are similar. However, there is a difference in the mapping rates for some of the tools due
to the default options restricting the search space and the report of subopt hits. For instance,
0.6% of reported hits for MAQ and SOAP are suboptimal while Bowtie’s default options limit
the allowed number of backtracks to find mismatches. For RMAP, it does not report locations for
the amb reads.Therefore, RMAP has the least mapping percentage. On the other hand, GSNAP
maps 92% of the reads even though it reports subopt hits. This is due to being a non-seed based
tool, hence, more mismatches are allowed to be found in the first few base pairs.

Number of mismatches Not only does the number of mismatches affect the percentage of
mapped reads, but also affects the throughput. In particular, the mapping percentage increases
nonlinearly with the number of mismatches. Figure 3 shows the effect of the number of mismatches
in more details. There is a 20% increase in the percentage of mapped reads when allowing 3
mismatches instead of 2. On the other hand, there is less than 0.7% increase when allowing 7
mismatches instead of 6. In addition, the percentage of suboptimal hits decreases for large number
of mismatches. For instance, SOAP reports 21% of suboptimal hits when allowing 2 mismatches
while it is reduced to 1% when allowing 6 mismatches. From the throughput point of view, the
tools behave differently. For instance, Bowtie, MAQ, and RMAP are able to maintain almost
the same throughput while it increases for SOAP and GSNAP and drecreases for BWA. The
degradation in BWA performance is due to exceeding the default number of mismatches leading
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Figure 3: Comparing the different tools while changing the total mismatches from 2 to 7. T-mms
stands for the maximum allowed mismatches. A data set of 1 million reads of length 125 extracted
from the Human genome was used in this experiment.
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to excessive backtracking to find mismatch locations.
Seed length Theoretically, when fixing the number of allowed mismatches in the seed and in

the whole read, changing the seed length affects the mapping results. Specifically, a shorter seed
allows more mismatches in the remaining part of the read to be found. Therefore, the percentage
of mapped reads would increase even though the throughput would decrease. On the other hand,
having a longer seed would result in pruning some parts of the search tree as soon as possible
leading to throughput improvement. The aim of this experiment is to study this trade off. As
shown in the results given in Figure 4, the tools behave as expected. However, there are some
exceptions. For instance, when increasing the seed length from 32 to 36 the percentage of mapped
reads for SOAP and Bowtie decreases, however the throughput is not affected. In addition, there
is a 0.8% increase in the percentage of mapped reads for Bowtie when increasing the seed length
from 28 to 32. This behavior is due to the backtracking property that stops once a certain limit
is reached. Therefore, as a result of having less erroneous characters in the seed part, Bowtie can
continue more in the depth first search without exceeding the backtracking limit.

3.2 Input properties

Read length Longer reads tend to have more mismatches beside requiring more time to be fully
mapped [16]. In general, for a fixed number of mismatches, increasing the read length decreases
the percentage of mapped reads. Therefore, the aim of this experiment is to understand the
read length effect. The results in Figure 5 show that the mapping percentage decreases with
the increase in the read length while the reporting of suboptimal hits increases. As an example,
95% of Fangs’ output for read length 500 is suboptimal compared to 12% of its output for read
length 200. This is due to the increase of the erroneous bases with the increase of the read length.
Therefore, it becomes harder to map the reads with the specified mapping criteria. In addition,
Bowtie and BWA were the only short sequence mapping tools that managed to map long reads.
In particular, the max read length was 128 for MAQ, 300 for RMAP, and 200 for GSNAP while
SOAP took more than 24 hours to map read length 300 and did not finish. From the throughput
point of view, tools do not maintain the same behavior. For instance, the throughput of Bowtie
and SOAP decreases for long read lengths. This is due to the backtracking property and the
split strategy [8] used by Bowtie and SOAP, respectively, to find inexact matches. On the other
hand, even thought the throughput of BWA and GSNAP increase with the read length, it starts
to decrease for read length 500 and 200, respectively. GSNAP uses a faster mapping algorithm
depending on the read length and the number of mismatches which is triggered in our case for
read length ≥ 125. Therefore, the throughput increases. However, due to the work needed to
generate and combine position lists to create candidate mapping regions, it starts to decrease for
read length 200.

Paired-end Mapping paired-end reads affects the performance of the tools due to the added
constraint of mapping both ends within a maximum insert size. However, this effect is not well
understood as most of the tools were not tested on paired-end reads. Hence, we focus on under-
standing the effect of paired-end reads in this experiment. The results in Figure 6 (ungapped bars)
show that the throughput decreases for all of the tools when mapping paired-end reads, except for
BWA which was able to maintain almost the same throughput while MAQ had a small increase.
Even though all of the algorithms work by finding mapping locations for each end alone and then
try to find the best pair, GSNAP was the only tool to face a drop by 90% in the throughput.

Genome type To capture the effect of the genome type, we designed an experiment in which
the Human, the Zebrafish, and the Lancelet genomes were used as reference genomes. The sizes
of these genomes are 3.1Gbps, 1.5Gbps, and 0.9Gbps, respectively. Theoretically, for genome
indexing based tools (i.e, Bowtie, BWA, SOAP, and GSNAP), the throughput is expected to
increase with the decrease in the genome size. However, The results in Figure 7 show that some
tools do not act as expected. For instance, SOAP’s throughput decreases significantly for the
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Figure 4: The effect of changing the seed length on the BWT based tools. The tools were used
to map 16 million reads of length 70 bps on the Human genome. SOAP does not support seed
length < 28.

Zebrafish genome while GSNAP did not finish its run on the same genome albeit running for
two days. The reason for this behavior is the large repetition rate in the Zebrafish genome. For
instance, when mapping 1 million randomly generated reads, around 600 reads were mapped to
more than 100,000 locations in comparison to the Lancelet with the maximum number of locations
is around 10,000 for only 1 read. Hence, for GSNAP, the large repetition rates lead to generating
long genomic position lists; resulting in slowing down GSNAP significantly. Another interesting
result is the ability of most of the tools to map more than 96% of the reads for the Zebrafish
data set compared to around 91% for the Human and 89% for the Lancelet. The large mapping
percentage is also due to the large repetition. Hence, due to synthetically generating the reads,
large number of reads would be generated from the repeated regions, thus, even with a mismatch,
the probability of finding a mapping location would increase.
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exceeding the allowed insert size.
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were used for MAQ and RMAP.

13



Technical Report OSU BMI - HPC Lab

3.3 Algorithmic features

Gapped alignment is supported by most of the tools for paired-end reads, however, GSNAP and
BWA are the only tools to support it for single end reads. In general, gapped alignment should
improve the mapping percentage albeit decreasing the throughput. We designed an experiment to
understand the effect of gapped alignment. Tools were used to map synthetically generated reads
of length 70 to the Human genome while allowing one gap of length 3. The results in Figure 6 show
that the mapping percentage increases by 4% for SOAP in case of gapped alignment, while there
is no change for BWA and GSNAP. However, there is a drop of 15% and 75% in the throughput
for BWA and GSNAP, respectively. The decrease for GSNAP is due to the overhead added to
the algorithm to find pairs of candidate regions that co-localize within a maximum allowed gap
size. Then, it tries to find a crossover between the two regions without exceeding the maximum
number of mismatches leading to a significant decrease in the throughput.

3.4 Scalability

In this experiment, we tested the multithreading behavior. In addition, pMap4 was used to run
multiple instances of each tool on a number of processors on a single node to test the effect
of using multiprocesses. pMap is an open-source MPI-based tool that enables parallelization
of existing short sequence mapping tools by partitioning the reads and distributing the work
among the different processors. A single node was used in the multiprocesses experiment to
understand the effect of a good implementation of multithreading on the different tools. The
results for both experiments are given in Figure 8. We can observe from the multithreading
results that the tools had almost a linear speedup up to 4 threads. However, when increasing to 8
threads, Bowtie was the only tool to achieve 8x speedup. In addition, BWA had a similar speedup
in both multithreading and multiprocesses. For the multiprocesses experiment, concerning the
multithreading non-supporting tools, FANGS achieved almost a 6x speedup while there was a
small improvement for MAQ and RMAP. For the remaining tools, most of them were able to
maintain more than a 5x speedup for 8 processors, however this is less than a linear speedup.
One reason for this degradation is the overhead of the distribution and merging steps required by
distributed memory systems. As expected, we can notice that multithreading provides almost a
linear speedup, however, it is limited by the number of cores.

In general, using multiprocesses provides more degrees of freedom by parallelizing tools that
do not support multithreading and by making use of the available computational resources.

4 Conclusion

Next generation sequencing technology has led to the development of many sequence mapping
tools. Choosing the best tool among them has become a challenging task. In this work, we
provided a set of benchmarking tests that extensively analyze the performance of the different
tools. Each of the benchmarking test stresses a different aspect. Furthermore, we showed that
comparing between the tools from only one perspective leads to unfair comparison. In addition,
using only the default options is not sufficient for a thorough comparison. The benchmarking tests
were applied on the latest sequence mapping tools, namely, Bowtie, BWA, SOAP, MAQ, RMAP,
GSNAP, and FANGS. We showed that each tool has its own strengths and weaknesses. Therefore,
it is important to define each user’s need to choose the most suitable tool. For instance, GSNAP
is better than the other tools for large number of mismatches while its performance degrades
significantly when mapping paired-end reads. Bowtie and BWA do not report any suboptimal
hits, thus, leading to a more confidence in the mapped reads. In addition, changing the genome

4http://bmi.osu.edu/hpc/software/pmap/pmap.html
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Figure 8: The speedup when mapping 16 million reads of length 125 extracted from the Human
genome while allowing multithreading (the upper figure) or using multiprocesses (the lower figure).
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type does not affect their performance. However, BWA scales better for longer reads while Bowtie
gives the maximum speedup in multithreading mode. RMAP is superior than the other tools
regarding the mapping percentage of paired end reads while SOAP performs better when allowing
gapped alignment.
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