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Abstract. Coarse grain parallelism inherent in the solution of Linear
Programming (LP) problems with block angular constraint matrices has
been exploited in recent research works. However, these approaches su�er
from unscalability and load imbalance since they exploit only the exist-
ing block angular structure of the LP constraint matrix. In this paper,
we consider decomposing LP constraint matrices to obtain block angular
structures with speci�ed number of blocks for scalable parallelization. We
propose hypergraph models to represent LP constraint matrices for de-
composition. In these models, the decomposition problem reduces to the
well-known hypergraph partitioning problem. A Kernighan-Lin based
multiway hypergraph partitioning heuristic is implemented for experi-
menting with the performance of the proposed hypergraph models on
the decomposition of the LP problems selected from NETLIB suite. Initial
results are promising and justify further research on other hypergraph
partitioning heuristics for decomposing large LP problems.

1 Introduction

Linear Programming (LP) is currently one of the most popular tools in mod-
eling economic and physical phenomena where performance measures are to be
optimized subject to certain requirements. Algorithmic developments along with
successful industrial applications and the advent of powerful computers have in-
creased the users' ability to formulate and solve large LP problems. But, the
question still remains on how far we can push the limit on the size of large linear
programs solvable by today's parallel processing technology .

The parallel solution of block angular LP's has been a very active area of
research in both operations research and computer science societies. One of the
most popular approaches to solve block-angular LP's is the Dantzig{Wolfe de-
composition [1]. In this scheme, the block structure of the constraint matrix is
exploited for parallel solution in the subproblem phase where each processor
solves a smaller LP corresponding to a distinct block. A sequential coordina-
tion phase (the master) follows. This cycle is repeated until suitable termination
criteria are satis�ed. Coarse grain parallelism inherent in these approaches has
been exploited in recent research works [5, 8]. However, the success of these
approaches depends only on the existing block angular structure of the given
constraint matrix. The number of processors utilized for parallelization in these
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studies is clearly limited by the number of inherent blocks of the constraint
matrix. Hence, these approaches su�er from unscalability and load imbalance.

This paper focuses on the problem of decomposing irregularly sparse con-
straint matrices of large LP problems to obtain block angular structure with
speci�ed number of blocks for scalable parallelization. The literature that ad-
dresses this problem is extremely rare and very recent. Ferris and Horn [2] model
the constraint matrix as a bipartite graph. In this graph, the bipartition consists
of one set of vertices representing rows, and another set of vertices representing
columns. There exists an edge between a row vertex and a column vertex if and
only if the respective entry in the constraint matrix is nonzero. The objective
in the decomposition is to minimize the size of the master problem while main-
taining computational load balance among subproblem solutions. Minimizing
the size of the master problem corresponds to minimizing the sequential com-
ponent of the overall parallel scheme. Maintaining computational load balance
corresponds to minimizing processors' idle time during each subproblem phase.

In the present paper, we exploit hypergraphs for modeling constraint matri-
ces for decomposition. A hypergraph is de�ned as a set of vertices and a set of
nets (hyperedges) between those vertices. Each net is a subset of the vertices of
the hypergraph. In this work, we propose two hypergraph models for decompo-
sition. In the �rst model|referred to here as the row{net model|each row is
represented by a net, whereas each column is represented by a vertex. The set
of vertices connected to a net corresponds to the set of columns which have a
nonzero entry in the row represented by this net. In this case, the decomposition
problem reduces to the well-known hypergraph partitioning problem which is
known to be NP-Hard.

The second model|referred to here as the column{netmodel|is very similar
to the row{net model, only the roles of columns and rows are exchanged. The
column{net model is exploited in two distinct approaches. In the �rst approach,
hypergraph partitioning in the column{net model produces the dual LP problem
in primal block angular form. In the second approach, dual block angular matrix
achieved by hypergraph partitioning is transformed into a primal block angular
form by using a technique similar to the one used in stochastic programming to
treat non-anticipativity [9].

2 Preliminaries

A hypergraph H(V;N ) is de�ned as a set of vertices V and a set of nets (hy-
peredges) N between those vertices. Every net n 2 N is a subset of vertices.
The vertices in a net are called pins of the net. A graph is a special instance of
a hypergraph such that each edge has exactly two pins. � = (P1; : : : ; Pk) is a
k-way partition of H if the following conditions hold: each part P`; 1 � ` � k is
a nonempty subset of V , parts are pairwise disjoint, and union of k parts is V .

In a partition � of H , a net that has at least one pin (vertex) in a part is
said to connect that part. A net is said to be cut if it connects more than one
part, and uncut otherwise. The set of uncut (internal) nets and cut (external)
nets for a partition � are denoted as NI and NE , respectively. The cost of a



partition � (cutsize) is de�ned by the cardinality of the set of external nets,
i.e., cutsize(�) = jNE j = jN j � jNIj . A partition � of a hypergraph H is said
to be feasible if it satis�es a given balance criterion Vavg(1�") � jPij � Vavg(1+
") for i = 1; : : :k . Here, " represents the predetermined maximum imbalance

ratio allowed on part sizes, and Vavg = jVj=k represents the part size under
perfect balance condition. Hence, we can de�ne the hypergraph partitioning
problem as the task of dividing a hypergraph into two or more parts such that
the number of cut nets (cutsize) is minimized, while maintaining a given balance
criterion among the part sizes.

Hypergraph partitioning is an NP-hard combinatorial optimization problem,
hence we should resort to heuristics to obtain a good solution. However, es-
pecially in this application, heuristics to be adopted should run in low-order
polynomial time. Because, these heuristics will be executed most probably in
sequential mode as a preprocessing phase of the overall parallel LP program.
Hence, we investigate the fast Kernighan{Lin (KL) based heuristics for hyper-
graph partitioning in the context of decomposing linear programs. These KL-
based heuristics are widely used in VLSI layout design.

The basis of the KL-based heuristics is the seminal paper by Kernighan and
Lin [6]. KL algorithm is an iterative improvement heuristic originally proposed
for 2{way graph partitioning (bipartitioning). KL algorithm performs a num-
ber of passes over the vertices of the circuit until it �nds a locally minimum
partition. Each pass consists of repeated pairwise vertex swaps. Schweikert and
Kernighan [11] adapted KL algorithm to hypergraph partitioning. Fiduccia and
Mattheyses [3] introduced vertex move concept instead of vertex swap. The ver-
tex move concept together with proper data structures, e.g., bucket lists, reduced
the time complexity of a single pass of KL algorithm to linear in the size of the
hypergraph. Here, size refers to the number of pins in a hypergraph. The original
KL algorithm is not practical to use for large graphs and hypergraphs because
of its high time complexity, and so the partitioning algorithms proposed after
Fiduccia-Mattheyses' algorithm (FM algorithm) have utilized all the features
of FM algorithm. Krishnamurthy [7] added to FM algorithm a look-ahead abil-
ity, which helps to break ties better in selecting a vertex to move. Sanchis [10]
generalized Krishnamurthy's algorithm to a multiway hypergraph partitioning
algorithm so that it could directly handle the partitioning of a hypergraph into
more than two parts. All the previous approaches before Sanchis' algorithm (SN
algorithm) are originally bipartitioning algorithms.

3 Hypergraph Models for Decomposition

This section describes the hypergraph models proposed for decomposing LP's. In
the row{net model, the LP constraint matrix A is represented as the hypergraph
HR(VC ;NR). The vertex and net sets VC and NR correspond to the columns
and rows of the A matrix, respectively. There exist one vertex vi and one net nj
for each column and row, respectively. Net nj contains the vertices corresponding
to the columns which have a nonzero entry on row j . Formally, vi 2 nj if and
only if aji 6= 0. A k -way partition of HR can be considered as inducing a row
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with k blocks as shown in Fig. 1. Part Pi of HR corresponds to block Bi of A
p
B

such that vertices and internal nets of part Pi constitute the columns and rows
of block Bi , respectively. The set of external nets NE corresponds to the rows of
the master problem. That is, each cut net corresponds to a row of the submatrix
(R1; R2; : : : ; Rk). Hence, minimizing the cutsize corresponds to minimizing the
number of constraints in the master problem.

The proposed column{net model can be considered as the dual of the row{
net model. In the column{net model HC(VR;NC) of A , there exist one vertex vi
and one net nj for each row and column of A , respectively. Net nj contains the
vertices corresponding to the rows which have a nonzero entry on column j . That
is, vi 2 nj if and only if aij 6= 0. A k -way partition of HC can be considered
as converting A into a dual block angular form Ad

B with k blocks as shown in
Fig. 1. Part Pi of HC corresponds to block Bi of Ad

B such that vertices and in-
ternal nets of part Pi constitute the rows and columns of block Bi , respectively.
Each cut net corresponds to a column of the submatrix (Ct

1
; Ct

2
; : : : ; Ct

k)
t
.

Dual block angular form of Ad
B leads to two distinct parallel solution schemes.

In the �rst scheme, we exploit the fact that dual block angular constraint matrix
of the original LP problem is a primal block angular constraint matrix of the
dual LP problem. Hence, minimizing the cutsize corresponds to minimizing the
number of constraints in the master problem of the dual LP.

In the second scheme, Ad
B is transformed into a primal block angular ma-

trix for the original LP problem as described in [2, 9]. For each column j of

the submatrix (Ct
1
; Ct

2
; : : : ; Ct

k)
t
, we introduce multiple column copies for the

corresponding variable, one copy for each Ci that has at least one nonzero in
column j . These multiple copies are used to decouple the corresponding Ci 's on
the respective variable such that the decoupled column copy of Ci is permuted
to be a column of Bi . We then add column-linking row constraints that force
these variables all to be equal. The column-linking constraints created during
the overall process constitute the master problem of the original LP.

In this work, we select the number of blocks (i.e., k ) to be equal to the number
of processors. Hence, at each cycle of the parallel solution, each processor will
be held responsible for solving a subproblem corresponding to a distinct block.
However, a demand-driven scheme can also be adopted by choosing k to be
greater than the number of processors. This scheme can be expected to yield
better load balance since it is hard to estimate the relative run times of the
subproblems according to the respective block sizes prior to execution.



4 Hypergraph Partitioning Heuristic

Sanchis's algorithm (SN) is used for multiway partitioning of hypergraph repre-
sentations of the constraint matrices. Level 1 SN algorithm is brie
y described
here for the sake of simplicity of presentation. Details of SN algorithm which
adopts multi-level gain concept can be found in [10]. In SN algorithm, each ver-
tex of the hypergraph is associated with (k�1) possible moves. Each move is
associated with a gain. The move gain of a vertex vi in part s with respect to
part t (t 6=s), i.e., the gain of the move of vi from the home (source) part s to
the destination part t , denotes the amount of decrease in the number of cut nets
(cutsize) to be obtained by making that move. Positive gain refers to a decrease,
whereas negative gain refers to an increase in the cutsize.

Figure 2 illustrates the pseudo-code of the SN based k -way hypergraph par-
titioning heuristic. In this �gure, nets(v) denotes the set of nets incident to ver-
tex v . The algorithm starts from a randomly chosen feasible partition (Step 1),
and iterates a number of passes over the vertices of the hypergraph until a locally
optimum partition is found (repeat{loop at Step 2). At the beginning of each
pass, all vertices are unlocked (Step 2.1), and initial k�1 move gains for each
vertex are computed (Step 2.2). At each iteration (while{loop at Step 2.4) in a
pass, a feasible move with the maximum gain is selected, tentatively performed,
and the vertex associated with the move is locked (Steps 2.4.1{2.4.6). The lock-
ing mechanism enforces each vertex to be moved at most once per pass. That
is, a locked vertex is not selected any more for a move until the end of the pass.
After the move, the move gains a�ected by the selected move should be updated
so that they indicate the e�ect of the move correctly. Move gains of only those
unlocked vertices which share nets with the vertex moved should be updated.

1 construct a random, initial, feasible partition;
2 repeat
2.1 unlock all vertices;
2.2 compute k � 1 move gains of each vertex v 2 V

by invoking computegain(H;v) ;
2.3 mcnt = 0;
2.4 while there exists a feasible move of an unlocked vertex do
2.4.1 select a feasible move with max gain gmax of an unlocked vertex v

from part s to part t ;
2.4.2 mcnt = mcnt+ 1;
2.4.3 G[mcnt] = gmax ;
2.4.4 Moves[mcnt] = fv; s; tg ;
2.4.5 tentatively realize the move of vertex v ;
2.4.6 lock vertex v ;
2.4.7 recompute the move gains of unlocked vertices u 2 nets(v)

by invoking computegain(H;u) ;
2.5 perform pre�x sum on the array G[1 : : :mcnt] ;
2.6 select i� such that Gmax = max1�i��mcntG[i

�] ;
2.7 if Gmax > 0 then
2.7.1 permanently realize the moves in Moves[1 : : : i�] ;

until Gmax � 0;

Fig. 2. Level 1 SN hypergraph partitioning heuristic



computegain(H;u)
1 s part(u) ;
2 for each part t 6= s do
2.1 gu(t) 0;
3 for each net n 2 nets(u) do
3.1 for each part t = 1; : : : ; k do
3.1.1 �n(t) 0;
3.2 for each vertex v 2 n do
3.2.1 p part(v) ;
3.2.2 �n(p) �n(p) + 1;
3.3 for each part t 6= s do
3.3.1 if �n(t) = jnj � 1 then
3.3.1.1 gu(t) gu(t) + 1;

Fig. 3. Gain computation for a vertex u

Gain re-computation scheme is given here instead of gain update mechanism for
the sake of simplicity in the presentation (Step 2.4.7).

At the end of each pass, we have a sequence of tentative vertex moves and
their respective gains. We then construct from this sequence the maximumpre�x

subsequence of moves with the maximum pre�x sum (Steps 2.5 and 2.6). That
is, the gains of the moves in the maximumpre�x subsequence give the maximum
decrease in the cutsize among all pre�x subsequences of the moves tentatively
performed. Then, we permanently realize the moves in the maximum pre�x
subsequence and start the next pass if the maximum pre�x sum is positive.
The partitioning process terminates if the maximum pre�x sum is not positive,
i.e., no further decrease in the cutsize is possible, and we then have found a
locally optimum partitioning. Note that moves with negative gains, i.e., moves
which increase the cutsize, might be selected during the iterations in a pass.
These moves are tentatively realized in the hope that they will lead to moves
with positive gains in the following iterations. This feature together with the
maximumpre�x subsequence selection brings the hill{climbing capability to the
KL{based algorithms.

Figure 3 illustrates the pseudo-code of the move gain computation algorithm
for a vertex u in the hypergraph. In this algorithm, part(v) for a vertex v 2 V
denotes the part which the vertex belongs to, and �n(t) counts the number of
pins of net n in part t . Move of vertex u from part s to part t will decrease the
cutsize if and only if one or more nets become internal net(s) of part t by moving
vertex u to part t . Therefore, all other pins ( jnj � 1 pins) of net n should be
in part t . This check is done in Step 3.3.1.

5 Experimental Results

Level 2 SN hypergraph partitioning heuristic is implemented in C language
on Sun 1000E (60MHz SuperSparc processor) for experimenting the performance
of the proposed hypergraph models on the decomposition of LP problems se-
lected from NETLIB suite [4]. Table 1 illustrates the properties of the LP prob-
lems used for experimentation. Tables 2{4 illustrate the performance results for
the row-net model (RN), column-net model with dual LP approach (CN-D), and



Table 1. Properties of the constraint matrices of the selected NETLIB LP problems

name M N Z zrmax zravg zcmax zcavg

perold 625 1376 6018 37 9.63 16 4.37
sctap2 1090 1880 6714 24 6.16 6 3.57
ganges 1309 1681 6912 84 5.28 13 4.11
ship12s 1151 2763 8178 49 7.10 6 2.96
sctap3 1480 2480 8874 31 6.00 6 3.58
bnl2 2324 3489 13999 82 6.02 8 4.01
ship12l 1151 5427 16170 75 14.05 6 2.98

Table 2. Average decomposition results for the row-net model (RN)

Master Sub-Problems exec.
name k Problem min max min max min max time

M% (�) Z% (�) M% M% N% N% Z% Z% (secs)

2 19.2 (2.79) 37.7 (7.26) 35.1 45.7 45.4 54.6 25.1 37.1 1.40
4 47.3 (4.83) 73.6 (3.82) 7.8 18.8 22.4 27.5 4.1 9.5 1.80

perold 6 59.0 (4.06) 81.8 (2.66) 3.8 10.7 14.9 18.4 1.6 5.0 3.23
8 68.8 (2.19) 87.8 (1.35) 1.0 7.8 11.1 13.9 0.4 3.2 3.27
2 9.7 (2.13) 31.1 (6.58) 41.2 49.1 46.1 53.9 30.6 38.3 1.88
4 15.6 (0.57) 46.3 (0.72) 19.3 22.9 22.7 27.4 12.1 14.7 3.25

sctap2 6 17.0 (0.84) 47.8 (0.75) 12.4 15.2 14.9 18.4 7.7 9.7 5.83
8 19.0 (1.24) 49.6 (1.00) 9.0 11.3 11.2 13.8 5.5 7.1 8.40
2 10.0 (1.32) 23.1 (1.72) 41.1 48.8 45.6 54.4 34.6 42.3 1.30
4 15.2 (1.70) 27.8 (2.00) 18.4 23.7 22.5 27.4 14.6 21.4 3.90

ganges 6 18.1 (1.73) 30.3 (2.30) 11.4 16.0 14.9 18.4 8.4 14.8 6.42
8 20.7 (2.55) 33.8 (3.86) 7.5 12.1 11.1 13.8 4.9 11.3 9.20
2 15.8 (0.52) 71.3 (1.54) 40.4 43.9 45.1 54.9 12.1 16.6 1.38
4 22.9 (2.05) 80.4 (2.48) 16.3 25.2 22.5 27.5 3.9 6.2 3.35

ship12s 6 29.1 (1.70) 87.4 (1.88) 9.4 18.6 14.9 18.4 1.7 2.6 3.52
8 31.7 (0.56) 90.2 (0.60) 6.4 15.9 11.2 13.7 0.9 1.5 2.75
2 8.3 (1.35) 29.7 (4.23) 41.9 49.8 45.9 54.1 31.4 38.9 3.58
4 15.1 (0.77) 43.1 (0.84) 19.2 23.2 22.6 27.4 12.6 15.9 4.50

sctap3 6 17.5 (1.06) 45.7 (1.18) 12.3 15.4 15.0 18.3 7.9 10.4 8.62
8 19.4 (1.51) 47.5 (1.38) 8.8 11.4 11.2 13.8 5.6 7.7 11.85
2 14.0 (1.71) 41.6 (5.04) 38.8 47.2 45.2 54.8 24.6 33.8 5.75
4 21.9 (0.80) 60.5 (1.31) 15.3 24.5 22.5 27.4 7.8 11.8 9.35

bnl2 6 24.6 (1.95) 64.8 (2.22) 7.4 17.1 14.9 18.4 3.7 7.6 15.18
8 28.5 (2.31) 69.6 (2.53) 4.1 13.2 11.2 13.8 1.8 5.7 20.98
2 16.7 (0.14) 70.3 (0.19) 40.1 43.2 45.0 55.0 13.2 16.6 3.67
4 25.2 (3.79) 74.7 (2.00) 13.6 24.8 22.5 27.3 4.7 7.5 9.62

ship12l 6 59.9 (2.76) 92.4 (1.40) 3.0 14.7 15.0 18.4 0.3 2.2 11.90
8 66.9 (2.54) 95.8 (1.27) 1.9 12.5 11.2 13.8 0.1 1.1 14.32

column-net model with block transformation (CN-T), respectively. In Table 1,
M , N and Z denote the number of rows, columns, and nonzeros in the con-
straint matrices, respectively. Here, zr (zc ) represents the number of nonzeros
in the rows (columns) of a constraint matrix.

The proposed hypergraph representations of the selected constraint matrices
are partitioned into k = 2; 4; 6; 8 parts by running the level 2 SN algorithm. The



Table 3. Decomposition results for column-net model with dual LP approach (CN-D)

Master Sub-Problems exec.
name k Problem min max min max min max time

M% (�) Z% (�) M% M% N% N% Z% Z% (secs)

2 19.5 (2.23) 26.5 (3.46) 33.7 46.8 45.3 54.7 30.2 43.3 0.97
4 29.5 (2.21) 39.4 (3.16) 13.5 21.4 22.4 27.6 10.8 19.3 1.93

perold 6 33.4 (2.07) 44.6 (3.07) 7.3 14.9 14.7 18.5 5.2 13.2 3.35
8 36.2 (1.83) 48.7 (2.43) 5.1 11.1 11.1 13.9 2.9 9.5 4.58
2 16.0 (2.34) 21.9 (3.19) 36.8 47.2 45.4 54.6 32.8 45.3 1.02
4 32.5 (2.52) 44.2 (3.31) 14.0 19.6 22.4 27.5 10.6 17.0 2.25

sctap2 6 37.8 (2.62) 51.3 (3.39) 7.7 12.5 14.8 18.4 5.1 10.5 3.42
8 40.8 (2.14) 55.2 (2.68) 5.3 9.1 11.1 13.8 3.2 7.3 5.03
2 9.4 (3.11) 13.0 (7.16) 40.4 50.2 45.7 54.3 36.7 50.3 1.50
4 30.6 (1.63) 58.5 (4.32) 14.8 21.2 22.5 27.4 7.5 16.8 2.42

ganges 6 33.8 (1.62) 63.8 (4.07) 9.2 13.0 14.9 18.3 4.6 10.2 3.88
8 35.8 (1.27) 66.5 (2.96) 6.5 9.7 11.1 13.8 3.2 7.1 5.85
2 9.5 (2.19) 10.1 (2.23) 33.9 56.6 38.1 52.4 33.7 56.1 1.27
4 16.1 (5.30) 17.0 (5.36) 13.3 28.5 17.2 27.2 13.2 28.1 3.33

ship12s 6 17.9 (6.38) 19.0 (6.48) 5.9 20.3 9.8 18.3 5.8 20.0 5.20
8 19.8 (6.19) 21.0 (6.28) 3.1 15.7 6.8 13.8 3.1 15.5 7.70
2 16.7 (2.71) 22.9 (3.70) 36.7 46.6 45.8 54.2 33.4 43.7 1.82
4 31.9 (1.99) 43.4 (2.65) 13.9 20.0 22.5 27.6 10.7 17.5 3.33

sctap3 6 36.9 (2.18) 49.9 (2.84) 8.1 12.4 14.9 18.3 5.8 10.4 4.92
8 39.6 (1.69) 53.5 (2.16) 5.6 9.3 11.1 13.8 3.5 7.6 7.25
2 11.5 (2.85) 13.2 (3.53) 37.8 50.7 44.1 54.0 34.3 52.4 3.75
4 19.7 (2.71) 23.4 (3.65) 14.8 25.9 21.8 27.3 12.0 26.8 9.07

bnl2 6 23.3 (3.26) 27.9 (4.33) 8.4 17.7 14.4 18.3 6.0 18.4 14.38
8 26.4 (3.48) 32.0 (4.56) 5.3 13.6 10.6 13.8 3.4 14.4 22.70
2 1.8 (1.68) 2.0 (1.69) 40.7 57.6 38.8 51.7 40.6 57.4 3.65
4 8.1 (5.77) 8.5 (5.80) 15.1 29.7 17.6 26.9 15.1 29.6 7.17

ship12l 6 8.9 (5.14) 9.4 (5.18) 8.5 20.6 10.7 18.2 8.4 20.5 10.95
8 12.5 (4.13) 13.0 (4.16) 4.2 16.0 6.7 13.8 4.2 16.0 15.50

maximum imbalance ratio is selected as " = 0:1. In Tables 2{4, SN heuristic is
executed 40 times for each hypergraph partitioning instance starting from dif-
ferent, random, initial partitions. Tables 2{4 display the averages of these runs.
In Tables 2{4, M%,N%, and Z% denote the percent ratios of the number of
rows, columns, and nonzeros of the master problem (subproblems) to the total
number of rows, columns and nonzeros of the overall constraint matrix, respec-
tively. Minimum and maximum values of these percent ratios are displayed for
the subproblems. In Tables 2 and 3, � values denote the standard deviations of
the respective averages. In Table 4, +M%,+N% and +Z% denote the percent
increases in the number of rows, columns, and nonzeros, respectively, due to the
column-linking rows added during the block transformation. Hence, M%,N%,
and Z% values in Table 4 correspond to the percent ratios to the respective
sizes of the enlarged constraint matrix.

As seen in Table 2, RN model yields promising results for sctap2, ganges
and sctap3 problems. In the decomposition of these problems, M% values for
the master problems remain below 21% for all k . As seen in Table 3, CN-D model



Table 4. Decomposition results for column-net model with transformation (CN-T)

Increase in the Master Sub-Problems exec.
name k Problem Size Problem min max min max min max time

+M% +N% +Z% M% Z% M% M% N% N% Z% Z% (secs)

2 43.3 19.7 9.0 30.1 8.2 31.9 38.0 44.5 55.5 40.2 51.6 1.00
4 84.3 38.3 17.5 45.6 14.9 12.2 15.0 20.9 29.1 17.0 25.9 1.75

perold 6 109.0 49.5 22.6 52.1 18.5 7.1 8.9 13.6 19.7 9.7 17.4 3.23
8 127.6 58.0 26.5 56.0 20.9 4.9 6.1 10.0 15.5 6.4 13.7 4.60
2 28.4 16.5 9.2 22.1 8.4 35.5 42.4 45.5 54.5 40.6 51.0 1.15
4 82.9 48.1 26.9 45.2 21.2 12.3 15.1 22.7 27.7 16.5 22.7 2.27

sctap2 6 109.8 63.6 35.6 52.2 26.2 7.1 8.8 14.7 18.6 9.7 14.4 3.50
8 128.0 74.2 41.5 56.1 29.3 4.9 6.1 10.8 14.2 6.5 10.8 5.33
2 11.4 8.9 4.3 10.2 4.1 41.1 48.7 45.8 54.2 41.9 54.0 1.52
4 84.6 65.9 32.0 45.8 24.3 12.2 14.8 22.4 27.9 14.1 27.4 2.55

ganges 6 120.0 93.4 45.4 54.5 31.2 6.8 8.3 14.5 18.9 8.2 18.9 3.80
8 146.9 114.4 55.7 59.5 35.7 4.5 5.6 10.5 14.8 5.6 14.6 6.10
2 23.1 9.6 6.5 18.5 6.1 36.9 44.5 41.1 58.9 37.8 56.2 1.45
4 42.3 17.6 11.9 28.8 10.5 16.0 19.6 16.7 33.4 14.4 30.0 3.33

ship12s 6 44.7 18.6 12.6 30.2 11.1 10.3 12.9 8.9 23.6 6.8 21.2 5.12
8 53.8 22.4 15.1 34.3 13.0 7.3 9.1 5.7 19.4 4.3 16.8 7.97
2 27.4 16.3 9.1 21.4 8.4 36.0 42.6 46.1 53.9 41.1 50.5 2.05
4 77.2 46.1 25.8 43.5 20.5 12.7 15.6 22.3 27.7 16.6 23.0 3.17

sctap3 6 100.7 60.1 33.6 50.1 25.1 7.4 9.2 14.8 18.8 10.0 14.8 5.08
8 116.5 69.5 38.8 53.8 28.0 5.2 6.4 10.8 14.3 6.8 10.9 8.05
2 16.8 11.2 5.6 14.3 5.3 39.3 46.5 43.8 56.2 38.4 56.3 3.92
4 39.7 26.4 13.2 28.3 11.6 16.2 19.7 20.2 29.9 15.6 28.5 9.10

bnl2 6 53.4 35.6 17.7 34.7 15.0 9.8 12.0 12.2 21.5 8.1 20.4 14.80
8 62.1 41.4 20.6 38.1 17.0 6.9 8.5 9.0 16.9 5.5 16.0 22.88
2 6.9 1.5 1.0 5.8 1.0 43.5 50.7 42.7 57.3 42.2 56.8 3.58
4 35.0 7.4 5.0 23.6 4.6 17.2 21.0 17.2 32.2 16.3 30.7 7.40

ship12l 6 39.3 8.3 5.6 26.1 5.2 11.0 13.6 11.4 22.2 10.4 21.0 11.28
8 56.4 12.0 8.0 34.3 7.3 7.2 9.1 6.7 17.1 6.0 15.9 16.00

gives promising results for ship12s and ship12l problems. In the decomposition
of these problems, M% values for the master problems remain below 20% for all
k . As expected, CN-T model produces master problems with large M% values
but small Z% values in general. The results of CN-T model for ship12s, bnl2
and ship12l problems seem to be promising. These experimental results do not
favor any model, since the performance of di�erent models vary on di�erent
problem instances due to their inherent structures.

A close examination of Tables 1{4 reveals a correlation between the perfor-
mance of the SN algorithm and the net degrees of the hypergraph models of
the constraint matrices besides their inherent structures. Here, degree dn of a
net n is the number of pins (vertices) connected to net n . In Table 1, zravg and
zcavg correspond to the average net degrees of the constraint matrices in the RN
and CN models, respectively. For example, in the RN model, the average net de-
grees of perold (davg = 9:63) and ship12l (davg = 14:05) problems are much
larger than those of the other problems displayed in Table 1. As seen in Table 2,
the performance of the SN algorithm deteriorates on these two problems. Sim-



ilarly, in the CN-D model, the average net degrees of ship12s (davg = 2:96)
and ship12l (davg = 2:98) problems are much smaller than those of the other
problems displayed in Table 1. As seen in Table 3, SN algorithm shows much
better performance on these problems than the other problems.

It is well known that the performance of the KL-based algorithms deterio-
rates on hypergraphs with large net degrees. In fact, multi-level gain concept in
SN algorithm is proposed as a remedy to this problem. In SN algorithm, higher
level gains should be used in tie-breaking with increasing net degrees. However,
memory requirement of SN algorithm drastically increases with increasing level
number. The aim of this paper was an initial experimentation of the proposed
hypergraph models for decomposition. We are currently investigating the per-
formance of other hypergraph partitioning heuristics for this application.

6 Conclusion

Decomposition of constraint matrices of LP problems was investigated to ob-
tain block angular structures for scalable parallelization. Hypergraph models
proposed to represent LP constraint matrices reduce the decomposition prob-
lem to the well-known hypergraph partitioning problem. A Kernighan-Lin based
multiway hypergraph partitioning heuristic was implemented for experimenting
with the proposed hypergraph models. Promising results were obtained in the
decomposition of the LP problems selected from NETLIB.
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