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96 R. Kannan and S. Vempala

1. Introduction

Algorithms for matrix multiplication, low-rank approximations, singular
value decomposition, dimensionality reduction and other compressed rep-
resentations of matrices, linear regression, etc., are widely used. For modern
data sets, these computations take too much time and space to perform on
the entire input matrix. Instead one can pick a random subset of columns
(or rows) of the input matrix. If s (for sample size) is the number of columns
we are willing to work with, we execute s statistically independent identical
trials, each selecting a column of the matrix. Sampling uniformly at ran-
dom (u.a.r.) is not always good, for example when only a few columns are
significant.

Using sampling probabilities proportional to squared lengths of columns
(henceforth called ‘length-squared sampling’) leads to many provable error
bounds. If the input matrix A has n columns, we define1

pj =
|A(:, j)|2

‖A‖2F
, for j = 1, 2, . . . , n,

and in each trial, pick a random X ∈ {1, 2, . . . , n}, with Pr(X = j) = pj .
We will prove error bounds of the form ε‖A‖2F , provided s grows as a

function of 1/ε (s is independent of the size of the matrix) for all matrices.
So, the guarantees are worst-case bounds rather than average-case bounds.
They are most useful when ‖A‖22/‖A‖2F is not too small, as is indeed the
case for the important topic of principal component analysis (PCA). The
algorithms are randomized (i.e., they use a random number generator) and
hence errors are random variables. We bound the expectations or tail prob-
abilities of the errors. In this paper, we strike a compromise between read-
ability and comprehensive coverage by presenting full proofs of conceptually
central theorems and stating stronger results without proofs.

1.1. Overview of the paper

The first problem we consider is computing the matrix product AAT . Given
as input an m×n matrix A, we select a (random) subset of s columns of A
(in s independent identical trials). We then scale the selected columns and
form an m× s matrix C. We wish to satisfy two conditions: (i) (each entry
of) CCT is an unbiased estimator of (the corresponding entry of) AAT , and
(ii) the sum of the variances of all entries of CCT (which we refer to as

1 All matrices in this paper have real entries. We use the usual norms for matrices: the
Frobenius norm (‖ ·‖F ) and the spectral norm (‖ ·‖2). We also use standard MATLAB
colon notation, i.e., A(:, j) is the jth column of A; see Golub and Van Loan (1996,
Section 1.1.8).
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Figure 1.1. Approximating A by a sample of s columns and r rows.

the ‘variance’) is at most ε2‖A‖4F . Formally,

E(CCT ) = AAT , E(‖AAT − CCT ‖2F ) ≤ ε2‖A‖4F . (1.1)

Note that (1.1) implies E(‖AAT −CCT ‖F ) ≤ ε‖A‖2F by Jensen’s inequality.
The starting point of sampling-based matrix algorithms was the discovery

of length-squared sampling by Frieze, Kannan and Vempala (1998, 2004),
motivated by low-rank approximation. We start with two properties of
length-squared sampling, which will be proved in Theorem 2.1.

• Length-squared sampling minimizes variance among all unbiased es-
timators.

• A sample of size s = 1/ε2 suffices to ensure (1.1). In particular, s is
independent of m and n.

Length-squared sampling achieves similar error bounds for general matrix
multiplication, matrix sketches, low-rank approximation, etc. The main
result in matrix sketching is as follows. For any m×n input matrix A, form
an m × s sub-matrix C of the columns of A and an r × n sub-matrix R
of the rows of A, both picked using length-squared sampling. We can then
compute an s× r matrix U so that

E(‖A− CUR‖22) ≤ ε‖A‖2F
provided r ≥ c/ε2, s ≥ c/ε3. This is proved in Theorem 2.5. A schematic
diagram of C, U and R is shown in Figure 1.1.

Section 2.3 shows a result based purely on matrix perturbation theory
(no probabilities involved) which in words states: If C and A are any two
matrices with CCT ≈ AAT (C,A may be of different dimensions), then the
restriction of A to the space spanned by the top k singular vectors of C is a
good approximation to A. Used in conjunction with (1.1), this reduces the
problem of low-rank approximation of A to computing the singular value
decomposition (SVD) of a submatrix C.

In Section 3 we apply length-squared sampling to tensors (higher-dim-
ensional arrays) to obtain good low-rank tensor approximation. Unlike
matrices, finding the best low-rank approximation for tensors is NP-hard.
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98 R. Kannan and S. Vempala

Low-rank tensor approximation has several applications, and we show that
there is a natural class of tensors (which includes dense hypergraphs and
generalizations of metrics) for which, after scaling, ‖A‖2 = Ω(‖A‖F ). Low-
rank approximation based on length-squared sampling yields good results.

In Sections 4, 5 and 6 we turn to more refined error bounds for matrices.
Can we improve the right-hand side of (1.1) if we want to bound only the
spectral norm instead of the Frobenius norm? Using deep results from
functional analysis, Rudelson and Vershynin (2007) showed that if we use
length-squared sampling,

‖CCT −AAT ‖2 ≤ ε‖A‖2‖A‖F holds with high probability

provided s ≥ c ln(1/ε)

ε2
. (1.2)

While the change from Frobenius to spectral norm was first considered for
its mathematical appeal, it is also suitable for the Hoeffding–Chernoff-type
inequality for matrix-valued random variables, proved by Ahlswede and
Winter (2002). We present this theorem and proof (Theorem 4.1), since
it is of independent interest. In Section 4 we prove the result of Rudelson
and Vershynin.

A central question in probability is to determine how many i.i.d. samples
from a probability distribution suffice to make the empirical estimate of the
variance close to the true variance in every direction. Mathematically, there
is an n ×m matrix A (with m > n, m possibly infinite) such that AAT is
the covariance matrix, and for any unit vector x ∈ Rn, the variance of the
distribution in direction x is xTAATx = |xTA|2. The problem is to find a
(small) sample of s columns of A to form an n × s matrix C so that the
variance is (approximately) preserved, to relative error ε, in every direction
x. That is, we wish to satisfy, for all x,

‖xTC‖2 ∈
[
(1− ε)‖xTA‖2, (1 + ε)‖xTA‖2

]
, denoted ‖xTC‖2 ∼=ε ‖xTA‖2.

(1.3)
It is important that (1.3) holds simultaneously for all x. It turns out that,
in general, if we sample columns of A with probability proportional to the
squared length not of its own columns but of the columns of A+A, where
A+ is the pseudo-inverse of A, then (1.3) follows from (1.2). We call this
‘preconditioned’ length-squared sampling (since multiplying A by A+ can
be thought of as preconditioning).

There is another, seemingly unrelated context, where exactly the same
question (1.3) arises, namely, graph sparsification, considered by Spielman
and Srivastava (2011). Here, A is the node–edge signed incidence matrix of a
graph, and the goal is to find a subset of edges satisfying (1.3). Spielman and
Srivastava (2011) showed in this case that the squared length of the columns
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of A+A are proportional to the (weighted) electrical resistances and can also
be computed in linear time (in the number of edges of the graph).

In theoretical computer science, preconditioned length-squared sampling
(also called leverage score sampling) arose from a different motivation: Can
the additive error guarantee (1.1) be improved to a relative error guarantee,
perhaps with more sophisticated sampling methods? Several answers have
been given to this question. The first is simply to iterate length-squared
sampling on the residual matrix in the space orthogonal to the span of
the sample chosen so far (Deshpande, Rademacher, Vempala and Wang
2006). Another is to use preconditioned length-squared sampling, where the
preconditioning effectively makes the sampling probabilities proportional to
the leverage scores (Drineas, Mahoney and Muthukrishnan 2008). A third
is volume sampling, which picks a subset of k columns with probabilities
proportional to the square of the volume of the k-simplex they span, together
with the origin (Deshpande and Vempala 2006, Deshpande and Rademacher
2010, Anari, Gharan and Rezaei 2016). We discuss preconditioned length-
squared sampling in Section 5.

In Section 6 we consider an approach pioneered by Clarkson and Woodruff
(2009, 2013) for obtaining similar relative-error approximations but in input
sparsity time, i.e., time that is asymptotically linear in the number of non-
zeros of the input matrix. This is possible via a method known as subspace
embedding, which can be performed in linear time using the sparsity of the
matrix. We first discuss an inefficient method using random projection,
then an efficient method due to Clarkson and Woodruff (2013) based on a
sparse projection.

As the title of this article indicates, we focus here on randomized al-
gorithms with linear algebra as the important application area. For treat-
ments from a linear algebra perspective (with randomized algorithms as one
of the tools), the reader might consult Halko, Martinsson and Tropp (2011),
Woodruff (2014) and references therein.

2. Basic algorithms

2.1. Matrix multiplication using sampling

Suppose A is an m × n matrix and B is an n × p matrix, and the product
AB is desired. We can use sampling to get an approximate product faster
than the traditional multiplication. Let A(:, k) denote the kth column of
A. A(:, k) is an m× 1 matrix. Let B(k, :) be the kth row of B. B(k, :) is a
1× n matrix. We have

AB =

n∑
k=1

A(:, k)B(k, :).
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100 R. Kannan and S. Vempala

Can we estimate the sum over all k by summing over a sub-sample? Let
p1, p2, . . . , pn be non-negative reals summing to 1 (to be determined later).
Let z be a random variable that takes values in {1, 2, . . . , n} with Pr(z =
j) = pj . Define an associated matrix random variable X such that

Pr

(
X =

1

pk
A(:, k)B(k, :)

)
= pk. (2.1)

Let E(X) denote the entry-wise expectation, that is,

E(X) =

n∑
k=1

Pr(z = k)
1

pk
A(:, k)B(k, :) =

n∑
k=1

A(:, k)B(k, :) = AB.

The scaling by 1/pk makes X an unbiased estimator of AB. We will be
interested in E

(
‖AB −X‖2F

)
, which is just the sum of the variances of all

entries of X,2 since

E(‖AB −X‖2F ) =
m∑
i=1

p∑
j=1

Var(xij) =
∑
ij

E(x2ij)− E(xij)
2

=

(∑
ij

∑
k

pk
1

p2k
a2ikb

2
kj

)
− ‖AB‖2F .

We can ignore the ‖AB‖2F term since it does not depend on the pk. Now∑
ij

∑
k

pk
1

p2k
a2ikb

2
kj =

∑
k

1

pk

(∑
i

a2ik

)(∑
j

b2kj

)
=
∑
k

1

pk
|A(:, k)|2|B(k, :)|2.

It can be seen by calculus3 that the minimizing pk must be proportional to
|A(:, k)‖B(k, :)|. In the important special case when B = AT , this means
picking columns of A with probabilities proportional to the squared length
of the columns. In fact, even in the general case when B 6= AT , doing so
simplifies the bounds, so we will use it. If pk is proportional to |A(:, k)|2,
that is,

pk =
|A(:, k)|2

‖A‖2F
,

then

E(‖AB −X‖2F ) = Var(X) ≤ ‖A‖2F
∑
k

|B(k, :)|2 = ‖A‖2F ‖B‖2F .

2 We use aij to denote entries of matrix A.
3 For any non-negative ck, minimizing

∑
k ckp

−1
k subject to

∑
k pk = 1 via Lagrange

multipliers implies that pk is proportional to
√
ck.
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Randomized algorithms in numerical linear algebra 101

To reduce the variance, we can take the average of s independent trials.
Each trial i, i = 1, 2, . . . , s yields a matrix Xi as in (2.1). We take

1

s

s∑
i=1

Xi

as our estimate of AB. Since the variance of the sum of independent random
variables is the sum of the variances, we find that

Var

(
1

s

s∑
i=1

Xi

)
=

1

s
Var(X) ≤ 1

s
‖A‖2F ‖B‖2F .

Let k1, . . . , ks be the k chosen in each trial. Expanding this, we obtain

1

s

s∑
i=1

Xi =
1

s

(
A(:, k1)B(k1, :)

pk1
+
A(:, k2)B(k2, :)

pk2
+ · · ·+ A(:, ks)B(ks, :)

pks

)
.

(2.2)
We write this as the product of an m × s matrix with an s × p matrix as
follows. Let C be the m × s matrix consisting of the following columns,
which are scaled versions of the chosen columns of A:

A(:, k1)√
spk1

,
A(:, k2)√
spk2

, . . . ,
A(:, ks)√
spks

.

Note that this scaling has a nice property, which we leave to the reader to
verify:

E(CCT ) = AAT . (2.3)

Define R to be the s× p matrix with the corresponding rows of B similarly
scaled, namely, R has rows

B(k1, :)√
spk1

,
B(k2, :)√
spk2

, . . . ,
B(ks, :)√
spks

.

The reader may also verify that

E(RTR) = ATA. (2.4)

From (2.2), we see that

1

s

s∑
i=1

Xi = CR.

This is represented in Figure 2.1. We summarize our discussion in The-
orem 2.1.

Theorem 2.1. SupposeA is anm×nmatrix andB is an n×pmatrix. The
product AB can be estimated by CR, where C is an m×s matrix consisting
of s columns of A picked according to length-squared distribution and scaled
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Figure 2.1. Approximate matrix multiplication using sampling.

to satisfy (2.3), and R is the s × p matrix consisting of the corresponding
rows of B scaled to satisfy (2.4). The error is bounded by

E(‖AB − CR‖2F ) ≤
‖A‖2F ‖B‖2F

s
.

Thus, to ensure that

E(‖AB − CR‖2F ) ≤ ε2‖A‖2F ‖B‖2F ,

it suffices to choose s ≥ 1/ε2. If now ε = Ω(1) (and so s = O(1)), then the
multiplication CR can be carried out in time O(mp).

When is this the error bound useful? Let us focus on the case B = AT so
that we have just one matrix to consider. If A is the identity matrix, then
the guarantee is not very good. In this case, ‖AAT ‖2F = n, but the right-
hand side of the inequality is n2/s. So we would need s > n for the bound
to be any better than approximating the product with the zero matrix.

More generally, the trivial estimate of the zero matrix for AAT makes an
error in the Frobenius norm of ‖AAT ‖F . If σ1, σ2, . . . are the singular values
of A, then the singular values of AAT are σ21, σ

2
2, . . . , and we have

‖A‖2F =
∑
t

σ2t and ‖AAT ‖2F =
∑
t

σ4t .

So from the theorem we can assert

E(‖AAT − CR‖2F ) ≤ ‖AAT ‖2F
provided that

s ≥ (σ21 + σ22 + · · · )2

σ41 + σ42 + · · ·
.

If rank(A) = r, then there are r non-zero σt and the best general upper
bound on the ratio (σ21 + σ22 + · · · )2/(σ41 + σ42 + · · · ) is r, so in general, s
needs to be at least r. If A is of full rank, this means that sampling will not
give us any gain over taking the whole matrix!
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Randomized algorithms in numerical linear algebra 103

However, if there is a constant c and a small integer p such that

σ21 + σ22 + · · ·+ σ2p ≥ c(σ21 + σ22 + · · ·+ σ2r ), (2.5)

then

(σ21 + σ22 + · · ·+ σ2r )
2

σ41 + σ42 + · · ·+ σ4r
≤ 1

c2
(σ21 + σ22 + · · ·+ σ2p)

2

σ41 + σ42 + · · ·+ σ2p
≤ p

c2
,

and so s ≥ p/c2 gives us a better estimate than the zero matrix. Further
increasing s by a factor decreases the error by the same factor. The condition
(2.5) (in words, the top p singular values make up a constant fraction of the
spectrum) is indeed the hypothesis of the subject of principal component
analysis, and there are many situations when the data matrix does satisfy
the condition and so sampling algorithms are useful.

2.1.1. Implementing length-squared sampling in two passes
Traditional matrix algorithms often assume that the input matrix is in ran-
dom access memory (RAM) and so any particular entry of the matrix can
be accessed in unit time. For massive matrices, RAM may be too small
to hold the entire matrix, but may be able to hold and compute with the
sampled columns/rows.

Let us consider a high-level model where the input matrix or matrices
have to be read from ‘external memory’ using a ‘pass’. In one pass, we can
read sequentially all entries of the matrix in some order. We may do some
‘sampling on the fly’ as the pass is going on.

It is easy to see that two passes suffice to draw a sample of columns of
A according to length-squared probabilities, even if the matrix is not in
row order or column order and entries are presented as a linked list (as
in sparse representations). In the first pass, we just compute the squared
length of each column and store this information in RAM. The squared
lengths can be computed as running sums. Then, we use a random number
generator in RAM to figure out the columns to be sampled (according to
length-squared probabilities). Then, we make a second pass in which we
pick out the columns to be sampled.

What if the matrix is already presented in external memory in column
order? In this case, one pass will do, based on a primitive using rejection
sampling.

The primitive is as follows. We are given a stream (i.e. a read-once only
input sequence) of positive real numbers a1, a2, . . . , an. We seek to have a
random i ∈ {1, 2, . . . , n} at the end, with the property that the probability
of choosing i is exactly equal to ai/

∑n
j=1 aj , for all i. This is solved as

follows. After having read a1, a2, . . . , ai, suppose we have (i)
∑i

j=1 aj and

(ii) a sample aj , j ≤ i, picked with probability aj/
∑i

k=1 ak. On reading
ai+1, we update the sum and, with the correct probability, reject the earlier
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104 R. Kannan and S. Vempala

sample and replace it with ai+1. If we need s independent identical samples,
we just run s such processes in parallel.

2.2. Sketch of a large matrix

The main result of this section is that for any matrix, a sample of columns
and rows, each picked according to length-squared distribution, provides a
good sketch of the matrix in a formal sense that will be described briefly.
Let A be an m×n matrix. Pick s columns of A according to length-squared
distribution. Let C be the m × s matrix containing the picked columns
scaled so as to satisfy (2.3), that is, if A(:, k) is picked, it is scaled by 1/

√
spk.

Similarly, pick r rows of A according to length-squared distribution on the
rows of A. Let R be the r×n matrix of the picked rows, scaled as follows. If
row k of A is picked, it is scaled by 1/

√
rpk. We then have E(RTR) = ATA.

From C and R, we can find a matrix U so that A ≈ CUR.
One may recall that the top k singular vectors give a similar picture.

But the SVD takes more time to compute, requires all of A to be stored
in RAM, and does not have the property that the singular vectors, the
basis of the reduced space, are directly from A. The last property – that
the approximation involves actual rows/columns of the matrix rather than
linear combinations – is called an interpolative approximation, and is useful
in many contexts. Some structural results of such approximations are found
in the work of Stewart (Stewart 1999, Stewart 2004, Berry, Pulatova and
Stewart 2004) and Goreinov, Tyrtyshnikov and Zamarashkin (Goreinov,
Tyrtyshnikov and Zamarashkin 1997, Goreinov and Tyrtyshnikov 2001).

We briefly mention two motivations for such a sketch. Suppose A is the
document-term matrix of a large collection of documents. We are to ‘read’
the collection at the outset and store a sketch so that later, when a query
represented by a vector with one entry per term arrives, we can find its
similarity to each document in the collection. Similarity is defined by the
dot product. In Figure 1.1 it is clear that the matrix–vector product of a
query with the right-hand side can be done in time O(ns+ sr+ rm), which
would be linear in n and m if s and r are O(1). To bound errors for this
process, we need to show that the difference between A and the sketch of A
has small 2-norm. The fact that the sketch is an interpolative approximation
means that our approximation essentially consists a subset of documents
and a subset of terms, which may be thought of as a representative set of
documents and terms. Moreover, if A is sparse in its rows and columns –
each document contains only a small fraction of the terms and each term
is in only a small fraction of the documents – then this property will be
preserved in C and R, unlike with the SVD.

A second motivation comes from recommendation systems. Here A would
be a customer–product matrix whose (i, j)th entry is the preference of
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Randomized algorithms in numerical linear algebra 105

customer i for product j. The objective is to collect a few sample entries
of A and, based on these, get an approximation to A so that we can make
future recommendations. A few sampled rows of A (all preferences of a few
customers) and a few sampled columns (all customer preferences for a few
products) give a good approximation to A provided that the samples are
drawn according to the length-squared distribution.

It now remains to describe how to find U from C and R. There is an
n×n matrix P of the form P = QR which acts as the identity on the space
spanned by the rows of R and zeros out all vectors orthogonal to this space.
The matrix Q is just the pseudo-inverse of R.

Lemma 2.2. If rank(R) = r′ and R =
∑r′

t=1 σtutv
T
t is the SVD of R, then

the matrix P =
(∑r′

t=1 σt
−1 vtu

T
t

)
R satisfies:

(i) Px = x for every vector x of the form x = RTy,

(ii) if x is orthogonal to the row space of R, then Px = 0,

(iii) P = RT
(∑r′

t=1 σt
−2 utu

T
t

)
R.

We begin with some intuition. In particular, we first present a simpler idea
that does not work but will then motivate the idea that does work. Write
A as AI, where I is the n×n identity matrix. Now, let us approximate the
product AI using the algorithm of Theorem 2.1 from the previous section,
that is, by sampling s columns of A according to their squared lengths.
Then, as in the last section, write AI ≈ CW , where W consists of a scaled
version of the s rows of I corresponding to the s columns of A that were
picked. Theorem 2.1 bounds the error ‖A− CW‖2F by

‖A‖2F ‖I‖2F /s = ‖A‖2F
n

s
.

But we would like the error to be a small fraction of ‖A‖2F which would
require s ≥ n, which clearly is of no use since this would pick at least as
many columns as the whole of A.

Instead, let us use the identity-like matrix P instead of I in the above
discussion. Using the fact that R is picked according to the squared length,
we will show the following proposition later.

Proposition 2.3. A ≈ AP with error E(‖A−AP‖22) ≤ ‖A‖2F /
√
r.

We then use Theorem 2.1 to argue that instead of doing the multiplication
AP , we can use the sampled columns of A and the corresponding rows of P .
The sampled s columns of A form C. We have to take the corresponding s
rows of the matrix

P = RT
( r′∑
t=1

1

σ2t
utu

T
t

)
R.
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106 R. Kannan and S. Vempala

This is the same as taking the corresponding s rows of RT and multiplying

this by
(∑r′

t=1 σt
−2 utu

T
t

)
R. It is easy to check that this leads to an expres-

sion of the form CUR. Moreover, by Theorem 2.1, the error is bounded by

E(‖AP − CUR‖22) ≤ E(‖AP − CUR‖2F ) ≤
‖A‖2F ‖P‖2F

s
≤ r

s
‖A‖2F , (2.6)

since we will deduce the following inequality.

Proposition 2.4. ‖P‖2F ≤ r.

Combining (2.6) and Proposition 2.3, and using the fact that by the
triangle inequality we have

‖A− CUR‖2 ≤ ‖A−AP‖2 + ‖AP − CUR‖2,

which in turn implies that

‖A− CUR‖22 ≤ 2‖A−AP‖22 + 2‖AP − CUR‖22,

we obtain the main result.

Theorem 2.5. Suppose A is any m × n matrix and r and s are positive
integers. Suppose C is an m×s matrix of s columns of A picked according to
length-squared sampling, and similarly R is a matrix of r rows of A picked
according to length-squared sampling. Then we can find from C,R an s× r
matrix U such that

E(‖A− CUR‖22) ≤ ‖A‖2F
(

2√
r

+
2r

s

)
.

We see that if s is fixed, the error is minimized when r = (s/2)2/3. Choos-
ing s = O(r/ε) and r = 1/ε2, the bound becomes O(ε)‖A‖2F .

Now we prove Proposition 2.3. First,

‖A−AP‖22 = max
{x:|x|=1}

|(A−AP )x|2.

Let us first suppose that x is in the row space V of R. We have Px = x, so
for x ∈ V we have (A−AP )x = 0. Now, since every vector can be written
as the sum of a vector in V plus a vector orthogonal to V , this implies
that the maximum must therefore occur at some x ∈ V ⊥. For such x, we
have (A − AP )x = Ax. Thus, the question now becomes: For unit-length
x ∈ V ⊥, how large can ‖Ax‖2 be? To analyse this, we can write

‖Ax‖2 = xTATAx = xT (ATA−RTR)x

≤ ‖ATA−RTR‖2|x|2 ≤ ‖ATA−RTR‖2.

This implies that we get ‖A − AP‖22 ≤ ‖ATA − RTR‖2. So, it suffices to
prove that

E(‖ATA−RTR‖22) ≤ ‖A‖4F /r,
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Randomized algorithms in numerical linear algebra 107

which follows directly from Theorem 2.1, since we can think of RTR as a
way of estimatingATA by picking (according to length-squared distribution)
columns of AT , that is, rows of A. By Jensen’s inequality, this implies that

E(‖ATA−RTR‖2) ≤
‖A‖2F√

r

and proves Proposition 2.3.
Proposition 2.4 is easy to see. Since, by Lemma 2.2, P is the identity on

the space V spanned by the rows of R, and Px = 0 for x perpendicular to
the rows of R, we have that ‖P‖2F is the sum of its singular values squared,
which is at most r as claimed.

Finally, to bound the time needed to compute U , the only step involved
in computing U is to find the SVD of R. But note that RRT is an r × r
matrix, and since r is much smaller than n,m, this is fast.

2.3. Low-rank approximations and the SVD

Singular value decomposition yields the best approximation of given rank
to a matrix in both spectral norm and Frobenius norm. Here, we show that
a near-optimal low-rank approximation (LRA) of a matrix A can be found
by computing the SVD of a smaller matrix R. The main result is that for
any matrix R with

ATA ≈ RTR,

the restriction of A to the space spanned by the top few right singular
vectors of R is a good approximation to A. This is purely based on matrix
perturbation theory: there is no probability involved.

If we can find an R with smaller dimensions than A, with RTR ≈ ATA,
then computing the SVD for R would be faster. Indeed, we have already
seen one way of getting such an R: pick a set of r rows of A in r i.i.d.
trials according to the length-squared distribution and scale them so that
E(RTR) = ATA. We saw in Theorem 2.1 that RTR ≈ ATA.

The Hoffman–Wielandt inequality (stated below) implies that if ‖RTR−
ATA‖F is small, then the singular values of A and R are close. If the
top singular vectors of R and A were close, the desired result would follow
easily. However, as is well known, multiple singular values are points of
discontinuity of singular vectors. But it is not difficult to see intuitively that
LRA is not discontinuous: using a singular vector of a slightly worse singular
value does not induce gross errors in LRA, and this intuition underlies the
result proved formally here.
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108 R. Kannan and S. Vempala

2.3.1. Restriction to the SVD subspace

If w1,w2, . . . ,wk is a basis for the vector space V , the restriction of A to
V is

Ā = A
k∑
t=1

wtw
T
t satisfies Āx =

{
Ax if x ∈ V,
0 if x ⊥ V.

(2.7)

Theorem 2.6. For any r × n matrix R and any m × n matrix A, if
v1,v2, . . . ,vk are the top k right singular vectors of R and A(k) is the best
rank-k approximation to A, then∥∥∥∥A−A k∑

t=1

vtv
T
t

∥∥∥∥2
F

≤ ‖A−A(k)‖2F + 2
√
k‖RTR−ATA‖F , (2.8)

∥∥∥∥A−A k∑
t=1

vtv
T
t

∥∥∥∥2
2

≤ ‖A−A(k)‖22 + 2‖RTR−ATA‖2. (2.9)

In (2.8), the first term ‖A − A(k)‖2F is the best possible error we can
make with exact SVD of A. We cannot avoid that. The second term is the
penalty we pay for computing with R instead of A, and similarly for (2.9).
The theorem is for any r including the cases r = 0 and r = n. Central to
the proof is the Hoffman–Wielandt inequality, stated next without proof.

Lemma 2.7. If P,Q are two real symmetric n×n matrices and λ1, λ2, . . .
denote eigenvalues in non-increasing order, then

n∑
t=1

(λt(P )− λt(Q))2 ≤ ‖P −Q‖2F .

We can now prove the low-rank approximation guarantee.

Proof of Theorem 2.6. Complete v1,v2, . . . ,vk to a basis v1,v2, . . . ,vn
of Rn. Then∥∥∥∥A−A k∑

t=1

vtv
T
t

∥∥∥∥2
F

− ‖A−A(k)‖2F

= ‖A‖2F −
∥∥∥∥A k∑

t=1

vtv
T
t

∥∥∥∥2
F

− (‖A‖2F − ‖A(k)‖2F )

= ‖A(k)‖2F −
∥∥∥∥A k∑

t=1

vtv
T
t

∥∥∥∥2
F

=
k∑
t=1

σ2t (A)−
k∑
t=1

‖Avt‖2
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Randomized algorithms in numerical linear algebra 109

=

k∑
t=1

σ2t (A)−
k∑
t=1

vTt (ATA−RTR)vt −
k∑
t=1

vTt R
TRvt

=
k∑
t=1

(σ2t (A)− σ2t (R))−
k∑
t=1

vTt (ATA−RTR)vt.

We can now deduce that∣∣∣∣ k∑
t=1

vTt (ATA−RTR)vt

∣∣∣∣ ≤ k‖ATA−RTR‖2,
but we want

√
k instead of k. For this, we use the Cauchy–Schwarz inequal-

ity to assert∣∣∣∣ k∑
t=1

vTt (ATA−RTR)vt

∣∣∣∣ ≤ √k( k∑
t=1

(vTt (ATA−RTR)vt)
2

)1/2

≤
√
k‖ATA−RTR‖F ,

since the Frobenius norm is invariant under change of basis and, in a basis
containing v1,v2, . . . ,vk,

k∑
t=1

(vTt (ATA−RTR)vt)
2

is the sum of squares of the first k diagonal entries of ATA−RTR. We still
have to bound

k∑
t=1

(σ2t (A)− σ2t (R)),

for which we use the Hoffman–Wielandt inequality, after another use of
Cauchy–Schwarz:

k∑
t=1

(σ2t (A)− σ2t (R)) ≤
√
k

( k∑
t=1

(σ2t (A)− σ2t (R))2
)1/2

.

Now σ2t (A) = λt(A
TA) and σ2t (R) = λt(R

TR), and so

k∑
t=1

(σ2t (A)− σ2t (R))2 ≤ ‖ATA−RTR‖2F .

Plugging these in, we obtain (2.8).
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110 R. Kannan and S. Vempala

For (2.9), first note that the top singular vector u of A − A
∑k

t=1 vtv
T
t

must be orthogonal to the span of v1,v2, . . . ,vk. Hence(
A−A

k∑
t=1

vtv
T
t

)
u = Au

by (2.7). Thus∥∥∥∥A−A k∑
t=1

vtv
T
t

∥∥∥∥2
2

= ‖Au‖2

= uTATAu

= uT (ATA−RTR)u + uTRTRu ≤ ‖ATA−RTR‖2 + σ2k+1(R)

= ‖ATA−RTR‖2 + (σ2k+1(R)− σ2k+1(A)) + σ2k+1(A)

≤ 2‖ATA−RTR‖2 + σ2k+1(A),

by Weyl’s inequality (Horn and Johnson 2012, Section 4.3), which states
that

λk+1(R
TR) ∈ [λk+1(A

TA)−‖ATA−RTR‖2, λk+1(A
TA)+‖ATA−RTR‖2].

To summarize, here is the algorithm for LRA of A after one final note:
we need the right singular vectors of R. For this, we can compute the SVD
of RRT (an r × r matrix) to find the left singular vectors of R, from which
we can get the right singular vectors.

(1) Pick r rows of A by length-squared sampling, and scale them so that
for the resulting r × n matrix R, E(RTR) = ATA.

(2) Find RRT . Find the left singular vectors of R by computing the SVD
of the r× r matrix RRT . Premultiply R by the left singular vectors to
get the right singular vectors v1,v2, . . . ,vk of R.

(3) Return A
∑

t=1 vtv
T
t as the implicit LRA (or if required, multiply out

and return the matrix).

Let p be the maximum number of non-zero entries in any row of A (p ≤ n).
The first step can be done in two passes from external memory. For the
second step, RRT can be found in O(r2p) time. The spectral decomposition
of RRT can be done in time O(r3) (or better). Finally, multiplying the k
left singular values by R can be done in time O(krp).

The running time has been improved by Drineas, Kannan and Mahoney
(2006) and further by Clarkson and Woodruff (see Woodruff 2014).
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3. Tensor approximation via length-squared sampling

An r-tensor A is an r-dimensional array with real entries Ai1,i2,...,ir , for
i1, i2, . . . , ir ∈ {1, 2, . . . , n}. Tensors encode mutual information about sub-
sets of size three or higher (matrix entries are pairwise information) and
arise naturally in a number of applications.

In analogy with matrices, we may define a rank-1 tensor to be the outer
product of r vectors x(1),x(2), . . . ,x(r) denoted x(1) ⊗ x(2) ⊗ · · · ⊗ x(r), with

(i1, i2, . . . , ir)th entry x
(1)
i1
x
(2)
i2
· · ·x(r)ir . We will show the following.

(1) For any r-tensor A, there exists a good approximation by the sum of
a small number of rank-1 tensors (Lemma 3.2).

(2) We can algorithmically find such an approximation (Theorem 3.3).

In the case of matrices, traditional linear algebra algorithms find optimal
approximations in polynomial time. Unfortunately, there is no such theory
(or algorithm) for r-dimensional arrays when r > 2. Indeed, there are
computational hardness results (Hillar and Lim 2013). But our focus here
is what we can do, not hardness results. We assume throughout that r is
a fixed number, whereas n grows to infinity. We will develop polynomial-
time algorithms for finding low-rank approximations. The algorithms make
crucial use of length-squared sampling.

Definition 3.1. Corresponding to an r-tensor A, there is an r-linear form
defined as follows: for vectors x(1),x(2), . . . ,x(r),

A(x(1),x(2), . . . ,x(r)) =
∑

i1,i2,...,ir

Ai1,i2,...,ir x
(1)
i1
x
(2)
i2
· · ·x(r)ir . (3.1)

We use the following two norms of r-dimensional arrays corresponding to
the Frobenius and spectral norms for matrices:

‖A‖F =
(∑

A2
i1,i2,...,ir

)1/2
, (3.2)

‖A‖2 = max
x(1),x(2),...,x(r)

A(x(1),x(2), . . . ,x(r))

‖x(1)‖‖x(2)‖ · · · ‖x(r)‖
. (3.3)

Lemma 3.2. For any tensor A and any ε > 0, there exist k ≤ 1/ε2 rank-1
tensors B1, B2, . . . , Bk such that

‖A− (B1 +B2 + · · ·+Bk)‖2 ≤ ε‖A‖F .

Theorem 3.3. For any tensor A and any ε > 0, we can find k ≤ 4/ε2 rank-

1 tensors B1, B2, . . . , Bk, using a randomized algorithm in time (n/ε)O(1/ε4),
such that with high probability (over coin tosses of the algorithm), we have

‖A− (B1 +B2 + · · ·+Bk)‖2 ≤ ε‖A‖F .
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Proof of Lemma 3.2. If ‖A‖2 ≤ ε‖A‖F , then we are done. If not, there
are unit vectors x(1),x(2), . . . ,x(r) such that A(x(1),x(2), . . . ,x(r)) ≥ ε‖A‖F .
Now consider the r-dimensional array

B = A− (A(x(1),x(2), . . . ,x(r)))x(1) ⊗ x(2) ⊗ · · · ⊗ x(r).

It is easy to see that ‖B‖2F ≤ ‖A‖2F (1 − ε2). We may repeat for B: either

‖B‖2 ≤ ε‖A‖F and we may stop, or there exist y(1),y(2), . . . ,y(r) with
B(y(1),y(2), . . . ,y(r)) ≥ ε‖A‖F . Let

C = B −B(y(1),y(2), . . . ,y(r)) (y(1) ⊗ y(2) ⊗ · · · ⊗ y(r)).

Each time the Frobenius norm squared falls by ε2‖A‖2F , so this process will
only continue for at most 1/ε2 steps.

The algorithm that proves Theorem 3.3 will take up the rest of this sec-
tion. First, from the proof of Lemma 3.2, it suffices to find x(1),x(2), . . . ,x(r)

all of length 1, maximizing A(x(1),x(2), . . . ,x(r)) to within additive error
ε‖A‖F /2. We will give an algorithm to solve this problem. We need a bit
more notation. For any r−1 vectors z(1), z(2), . . . , z(r−1), we define a vector
with ith component

A(z(1), z(2), . . . , z(r−1), ·)i =
∑

i1,i2,...,ir−1

Ai1,i2,...,ir−1,iz
(1)
i1
z
(2)
i2
· · · z(r−1)ir−1

. (3.4)

Here is the idea behind the algorithm. Suppose z(1), z(2), . . . , z(r) are the
unknown unit vectors that maximize A(x(1),x(2), . . .). Since

A(z(1), z(2), . . . , z(r−1), z(r)) = z(r)
T
A(z(1), z(2), . . . , z(r−1), ·),

we have

z(r) =
A(z(1), z(2), . . . , z(r−1), ·)
|A(z(1), z(2), . . . , z(r−1), ·)|

.

Thus, if we knew z(1), z(2), . . . , z(r−1), then we could compute z(r). In
fact, each component of z(r) is the sum of nr−1 terms as in (3.4). We
can hope to estimate the components of z(r) with a sample of fewer than
nr−1 terms. In fact, the main point is that we will show that if we pick a
sample I of s = O(1/ε2) elements (i1, i2, . . . , ir−1), with probabilities pro-
portional to

∑
iA

2
i1,i2,...,ir−1,i

, which is the squared length of the ‘line’ or

‘column’ (i1, i2, . . . , ir−1), the sums are well estimated. In more detail, let

f((i1, i2, . . . , ir−1)) = z
(1)
i1
z
(2)
i2
· · · z(r−1)ir−1

. We will show that∑
(i1,i2,...,ir−1)∈I

Ai1,i2,...,ir−1,if((i1, i2, . . . , ir−1)) ≈ cz(r)i ,

where c is a scalar (independent of i).
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Now we still need to compute the s(r−1) real numbers f((i1, i2, . . . , ir−1)),
for all (i1, i2, . . . , ir−1) ∈ I. We just enumerate all possibilities for the
s(r−1)-tuple of values in steps of a certain size η, and for each possibility, we
get a candidate z(r). One of these candidates will be (close to) the optimal
z(r), but we do not know which one. To solve this puzzle, we just turn the
problem on its head: for each candidate z(r), we can define an r − 1 tensor
A(·, . . . , ·, z(r)) similar to (3.4), and recursively find the y(1),y(2), . . . ,y(r−1)

(approximately) maximizing A(y(1),y(2), . . . ,y(r−1), z(r)). The best of these
will satisfy the theorem. One subtle point: each enumerated s(r − 1)-tuple
need not really come from z(1), z(2), . . . , z(r−1), since all we need for this
argument is that one of the enumerated s(r − 1)-tuples of values gets close

to the true {z(1)i1
z
(2)
i2
· · · z(r−1)ir−1

: (i1, i2, . . . , ir−1) ∈ I}.

Algorithm 3.4 (tensor decomposition). Set

η =
ε2

100r
√
n

and s =
105r

ε2
.

(1) Pick s random (r−1)-tuples (i1, i2, . . . , ir−1) with probabilities propor-
tional to the sum of squared entries on the corresponding line, that is,

p(i1, i2, . . . , ir−1) =

∑
iA

2
i1,i2,...,ir−1,i

‖A‖2F
.

Let I be the set of s (r − 1)tuples so chosen.

(2) Enumerate all functions

f : I → {−1,−1 + η,−1 + 2η, . . . , 0, . . . , 1− η, 1}.

(a) For each of the ((2/η) + 1)s(r−1) functions so enumerated, find a
vector y defined by

yi =
∑

(i1,i2,...,ir−1)∈I

Ai1,i2,...,ir−1,if((i1, i2, . . . , ir−1))

p(i1, i2, . . . , ir−1)
.

Replace y by y/‖y‖.

(b) Consider the (r − 1)-dimensional array A(y) defined by

(A(y))i1,i2,...,ir−1 =
∑
i

Ai1,i2,i3...,ir−1,i yi

and apply the algorithm recursively to find the approximate max-
imum

A(y)(x(1),x(2), . . . ,x(r−1)) subject to ‖x(1)‖ = · · · = ‖x(r−1)‖ = 1,

to within additive error ε‖A(y)‖F /2. Note that ‖A(y)‖F ≤ ‖A‖F
by Cauchy–Schwarz.
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(3) Output the set of vectors that gives the maximum among all these
candidates.

We now analyse Algorithm 3.4 and prove Theorem 3.3. We begin by
showing that the discretization does not cause any significant loss.

Lemma 3.5. Let z(1), z(2), . . . , z(r−1) be the optimal unit vectors. Sup-
pose w(1),w(2), . . . ,w(r−1) are obtained from the z(t) by rounding each co-
ordinate down to the nearest integer multiple of η. Then

‖A(z(1), z(2), . . . , z(r−1), ·)−A(w(1),w(2), . . . ,w(r−1), ·)‖ ≤ ε2

100
‖A‖F .

Proof. We write

|A(z(1), z(2), . . . , z(r−1), ·)−A(w(1),w(2), . . . ,w(r−1), ·)|
≤ |A(z(1), z(2), . . . , z(r−1), ·)−A(w(1), z(2), . . . , z(r−1), ·)|

+ |A(w(1), z(2), . . . , z(r−1), ·)−A(w(1),w(2), z(3), . . . , z(r−1), ·)|+ · · · .

A typical term above is∣∣A(w(1),w(2), . . . ,w(t), z(t+1), . . . , z(r−1), ·)
−A(w(1),w(2), . . . ,w(t),w(t+1), z(t+2), . . . , z(r−1), ·)

∣∣.
Define B to be the matrix with components

Bij =
∑

j1,j2,...,jt,jt+2,...,jr−1

Aj1,j2,...,jt,i,jt+2,...,jr−1,jw
(1)
j1
· · ·w(t)

jt
z
(t+2)
jt+2

· · · z(r−1)jr−1

Then the term above is bounded by

|B(z(t+1) −w(t+1))| ≤ ‖B‖2|z(t+1) −w(t+1)| ≤ ‖B‖F η
√
n ≤ ‖A‖F η

√
n.

The claim follows from our choice of η.

Next, we analyse the error incurred by sampling. Consider the (r − 1)-
tuple (i1, i2, . . . , ir−1) ∈ I, and define the random variables Xi by

Xi =
Ai1,i2,...,ir−1,iw

(1)
i1
w

(2)
i2
· · ·w(r−1)

ir−1

p(i1, i2, . . . , ir−1)
.

It follows that

E(Xi) = A(w(1),w(2), . . . ,w(r−1), ·)i.
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We estimate the variance using a calculation similar to the matrix case:

∑
i

Var(Xi) ≤
∑
i

∑
i1,i2,...,ir−1

A2
i1,i2,...,ir−1,i

(w
(1)
i1
· · ·w(r−1)

ir−1
)2

p(i1, i2, . . . , ir−1)

=
∑

i1,i2,...,ir−1

(w
(1)
i1
w

(2)
i2
· · ·w(r−1)

ir−1
)2

p(i1, i2, . . . , ir−1)

∑
i

A2
i1,i2,...,ir−1,i

= ‖A‖2F
∑

i1,i2,...,ir−1

(w
(1)
i1
w

(2)
i2
· · ·w(r−1)

ir−1
)2 = ‖A‖2F .

Consider the yi computed by the algorithm when all ẑ
(t)
it

are set to w
(t)
it

.
This will clearly happen at some point during the enumeration. This yi is
just the sum of s i.i.d. copies of Xi, one for each element of I. Thus we have

E(y) = sA(w(1),w(2), . . . ,w(r−1), ·), Var(y) = E(‖y−E(y)‖2) ≤ s‖A‖2F .

Let

ζ = sA(z(1), z(2), . . . , z(r−1)).

Since we only want to find the maximum to within an additive error of
εs‖A‖F /2, without loss of generality, we may assume ‖ζ‖ ≥ ε‖A‖F /2. By
Chebyshev’s inequality, it follows that with high probability ‖y − ζ‖ ≤
c
√
s‖A‖F . One can now show that∥∥∥∥ y

‖y‖
− ζ

‖ζ‖

∥∥∥∥ ≤ cε.
From this we obtain∥∥∥∥A( y

‖y‖

)
−A

(
ζ

‖ζ‖

)∥∥∥∥
F

≤ ε

10
‖A‖F .

Thus, for any r − 1 unit vectors a(1),a(2), . . . ,a(r−1), we have∥∥∥∥A(a(1),a(2), . . . ,a(r−1),
y

‖y‖

)
−A
(

a(1),a(2), . . . ,a(r−1),
ζ

‖ζ‖

)∥∥∥∥≤ ε

10
‖A‖F .

This implies that the optimal set of vectors for A(y/‖y‖) are nearly optimal
for A(ζ/‖ζ‖). Since z(r) = ζ/‖ζ‖, the optimal vectors for the latter problem
are z(1), . . . , z(r−1). The error bound follows using Lemma 3.5.

Finally, the running time of Algorithm 3.4 is dominated by the number
of candidates we enumerate, and is given by

poly(n)

(
1

η

)s2r
=

(
n

ε

)O(1/ε4)

.
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3.1. Symmetric non-negative tensors with good low-rank approximations

As we mentioned earlier, a small set of samples cannot hope to deal with
every matrix. But we saw that sampling yields good results for numerically
low-rank matrices (matrices where, say, σ21(A)+σ22(A)+· · ·+σ2p(A) ≥ c‖A‖2F
for a small p). Here, we will discuss instances of tensors with a similar
property.

Property X. The spectral norm of the tensor is a constant fraction of
the Frobenius norm after we scale the tensor, once for each dimension.

For a matrix, the permitted scaling is to scale the rows, scale the columns
or both. In this section we only deal with tensors with non-negative real en-
tries which are also symmetric, that is, for any permutation τ of {1, 2, . . . , r},
we have

Ai1,i2,...,ir = Aiτ(1),iτ(2),...,iτ(r) .

We will show that two natural classes of tensors have Property X. We
begin by discussing these classes for matrices. The first class of matrices
are adjacency matrices of dense graphs, that is, n× n matrices with entries
{0, 1} with Ω(n) non-zeros in each row. These arise in many applications.
They are easily seen to satisfy Property X with no scaling, since

‖A‖F = O(n), ‖A‖2 ≥
1

n

∑
i,j

Aij ∈ Ω(n).

Another important class of matrices represent metrics, where Aij is the
distance between points i and j in a metric space, that is, distances satisfy
the triangle inequality. Let Di =

∑n
j=1Aij be the total distance of point i

to other points. Then, one can prove the following result.

Lemma 3.6 (local density of metrics). Aij is at most (Di +Dj)/n.

Proof. By the triangle inequality, d(xi, xj) ≤ d(xi, xk)+d(xk, xj), for all k.
Summing, for k = 1, . . . , n, we obtain

nd(xi, xj) ≤
n∑
k=1

d(xi, xk) +
n∑
k=1

d(xk, xj) = Di +Dj ,

whence d(xi, xj) ≤ (Di +Dj)/n.

We call the lemma the ‘local density property’ since, for the previous
example of dense graphs, each entry of the adjacency matrix is indeed at
most a constant times the row and column average. Metrics also have this
property for each entry.
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Using this, one can show that a row and column scaled version of A
satisfies Property X. Let

D̄ =
1

n

n∑
i=1

Di.

The scaled matrix B is defined by

Bij =
Aij√

(Di + D̄)(Dj + D̄)
.

We will not prove here that B has Property X, but this will follow from
the general tensor case below. In fact, we will see that for tensors, a global
averaged version of the density lemma holds, and implies Property X.

Let A be any symmetric non-negative tensor. Let

Di =
∑

i2,i3,...,ir

Ai,i2,i3,...,ir , D̄ =
1

n

∑
i

Di.

Definition 3.7. The density of a tensor A is defined by

γ(A) =

( n∑
i=1

Di

)r−2 ∑
i1,i2,...,ir

A2
i1,i2,...,ir∏r

t=1(Dit + D̄)
.

Lemma 3.8. Let A be an r-dimensional tensor satisfying the following
local density condition:

Ai1,...,ir ≤
c

rnr−1

r∑
j=1

Dij , for all i1, . . . , ir ∈ V,

where c is a constant. Then A has local density at most c.

Remark. Examples of graphs that satisfy the local density condition above
include graphs with total number of edges at least cn2, metrics and quasi-
metrics where there is some γ > 0 with Aij = (distance between i and j)γ .

Proof. We need to bound the density of A. To this end,∑
i1,i2,...,ir∈V

A2
i1,...,ir∏r

j=1(Dij + D̄)

≤ c

rnr−1

∑
i1,i2,...,ir∈V

Ai1,...,ir
∑r

j=1Dij∏r
j=1(Dij + D̄)

≤ c

rnr−1

∑
i1,i2,...,ir∈V

Ai1,...,ir

r∑
j=1

1∏
k∈{1,...,r}\j(Dik + D̄)
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≤ c

rnr−1

( ∑
i1,i2,...,ir∈E

Ai1,...,ir

)
r

D̄r−1

=
c

(
∑n

i=1Di)r−2
.

Thus, the density is at most( n∑
i=1

Di

)r−2 ∑
i1,i2,...,ir∈E

A2
i1,...,ir∏r

j=1(Dij + D̄)
≤ c.

Let B be a scaled version of A:

Bi1,i2,...,ir =
Ai1,i2,...,ir∏r

t=1 αit
, where αi =

√
Di + D̄.

Lemma 3.9. ‖B‖F ≤ c‖B‖2.

Proof. We have

‖B‖2F =
γ(A)

(nD̄)r−2
,

while, if α = (α1, . . . , αr)
T , then

‖B‖2 ≥
B(α, α, . . . , α)

‖α‖r

=
1

‖α‖r
∑

i1,i2,...,ir

Bi1,i2,...,irαi1αi2 · · ·αir

=
1

‖α‖r
∑

i1,i2,...,ir

Ai1,i2,...,ir

=
nD̄

(2nD̄)r/2
.

Hence

‖B‖2F ≤ γ(A)2r‖B‖22.

4. Spectral norm error for matrices

In this section we prove the result of Rudelson and Vershynin (2007) sum-
marized earlier in (1.2). The proof involves the Hoeffding–Chernoff in-
equality for matrix-valued random variables, and we prove this first. The
Hoeffding–Chernoff inequality for real-valued independent identically dis-
tributed random variables X1, X2, . . . , Xs can be stated as follows. For any
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positive real numbers a, t, we have

Pr

( s∑
i=1

Xi > a

)
≤ e−ta (E(etX1))s.

Also, recall that the matrix exponential

eU =
∞∑
t=0

U t

t!

exists for any square matrix U . For a real symmetric matrix U with ei-
genvalues λi(U), eU has eigenvalues eλi(U) and the same eigenvectors as U .
Therefore eU is always positive semidefinite.

4.1. Hoeffding–Chernoff inequality for matrix-valued random variables

Theorem 4.1. Let X be a random variable taking values which are real
symmetric d × d matrices. Suppose X1, X2, . . . , Xs are i.i.d. draws of X.
For any positive real numbers a, t, we have

Pr

(
λmax

( s∑
i=1

Xi

)
≥ a

)
≤ d e−ta‖E etX‖s2, (4.1)

Pr

(∥∥∥∥ s∑
i=1

Xi

∥∥∥∥
2

≥ a
)
≤ d e−ta

(
‖E etX‖s2 + ‖E e−tX‖s2

)
. (4.2)

Remark. λmax is the largest eigenvalue. Note that having the expectation
inside the norm is better than having it outside on the right-hand side, since,
by the convexity of the norm function and Jensen’s inequality, it follows that
for a matrix-valued random variable B, we have ‖E(B)‖ ≤ E(‖B‖), and
it can be much less. Also, it is easy to see that applying the real-valued
Hoeffding–Chernoff inequality to each entry of

∑s
i=1Xi would not yield the

theorem.

Proof. Inequality (4.2) follows from (4.1), since∥∥∥∥∑
i

Xi

∥∥∥∥
2

= max

(
λmax

(∑
i

Xi

)
, λmax

(∑
i

(−Xi)

))
,

and we can apply the first inequality twice: once with Xi and once with
−Xi. So we prove only the first inequality. Let S = X1 + X2 + · · · + Xs.
Then

λmax(S) ≥ a ⇐⇒ λmax(tS) ≥ ta ⇐⇒ λmax(etS) ≥ eta =⇒ Tr[etS ] ≥ eta.

Now Tr[etS ] is a non-negative real-valued random variable, so by Markov’s
inequality, we get that

Pr(Tr[etS ] ≥ eta) ≤ e−taE(Tr[etS ]).
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We will upper-bound E(Tr[etS ]). To this end, we first use the Golden–
Thomson inequality (Bhatia 1996), which asserts that for Hermitian matri-
ces U, V ,

Tr[eU+V ] ≤ Tr[eU eV ].

(The proof is not given here. Note that this is false for three matrices.) We
will use this with U = t(X1 + X2 + · · · + Xs−1) and V = tXs. Also note
that Tr and E commute. Then

E(Tr[etS ]) ≤ E(Tr[eU eV ])

= Tr[E(eU eV )]

= Tr
[
EX1,X2,...,Xs−1(eU EXs(e

V ))
]

(independence)

≤ ‖E(etX)‖2 Tr
[
EX1,X2,...,Xs−1(eU )

]
(Tr[BC] ≤ Tr[B] ‖C‖2 for positive semidefinite B,C)

≤ ‖E(etX)‖s−12 Tr
[
E(etX)

]
≤ d‖E(etX)‖s2,

where, in the penultimate inequality, we have peeled off an Xi s− 2 times.
The factor of d arises because Tr[etX ] ≤ dλmax(etX). No direct way of bound-
ing λmax without going to the trace is known.

Notation. For two n × n real symmetric matrices B,C, we write B � C
when C −B is positive semidefinite.

Lemma 4.2. If B is a real symmetric matrix for which ‖B‖2 ≤ 1, then
eB � I +B +B2.

Proof. The inequality eλi ≤ 1 + λi + λ2i , for |λi| ≤ 1, implies

eλiviv
T
i � (1 + λi + λ2i )viv

T
i ,

whence

eB =

d∑
i=1

eλiviv
T
i �

d∑
i=1

(1 + λi + λ2i )viv
T
i = I +B +B2.

4.2. Applying Hoeffding–Chernoff to length-squared sampling

Suppose we use length-squared sampling on a matrix A to draw s columns
in s i.i.d. trials. Let

pj =
|A(:, j)|2

‖A‖2F
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be the probability of picking column j. Define the real symmetric matrix-
valued random variable Y satisfying

Pr

(
Y =

1

s pj
A(:, j)A(:, j)T

)
= pj . (4.3)

We saw that EY = AAT /s. Then the random variable

X = Y − EY satisfies EX = 0. (4.4)

Also, we have E(X2) � E(Y 2); this is proved along the same lines as for
real random variables, where the variance of a random variable is at most
the second moment. Therefore

E(X2) � E(Y 2) =
∑
j

pj
A(:, j)A(:, j)TA(:, j)A(:, j)T

s2 p2j
= AAT ‖A‖2F

1

s2
,

(4.5)

which implies

‖E(X2)‖2 ≤
1

s2
‖A‖22‖A‖2F . (4.6)

We will also need an absolute upper bound on ‖X‖2. For this, note that

‖X‖2 ≤
1

s
max(‖A(:, j)A(:, j)T /pj‖2, ‖AAT ‖2) (4.7)

≤ max

(
‖A(:, j)A(:, j)T ‖2

s‖A(:, j)‖2
‖A‖2F ,

‖A‖2F
s

)
=

1

s
‖A‖2F .

Proposition 4.3. If t is a positive real number such that ‖tX‖2 ≤ 1 for
all possible values of X, then

‖E e±tX‖2 ≤ 1 +
t2

s2
‖A‖22‖A‖2F ≤ et

2‖A‖22‖A‖2F /s
2

Proof. We have E(etX) � E(I+tX+t2X2) = I+t2E(X2), since EX = 0.
Thus we have the proposition using (4.5).

Note. It was important to argue that eB � I + B + B2 in the lemma. A
weaker inequality such as ‖eB‖2 ≤ ‖I + B + B2‖2 does not suffice. We are
ready to prove (1.2).

Theorem 4.4. Let A be any m×n matrix and let C be an m× s matrix
obtained by length-squared sampling and scaling to have E(CCT ) = AAT .
(C consists of columns Y1, Y2, . . . , Ys, which are i.i.d. copies of Y defined in
(4.3).) Then, for all ε ∈ [0, ‖A‖2/‖A‖F ],4 we have

Pr
(
‖CCT −AAT ‖2 ≥ ε‖A‖2‖A‖F

)
≤ 2n e−ε

2s/4.

4 If ε ≥ ‖A‖2/‖A‖F , then the zero matrix is a good enough approximation to AAT .
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122 R. Kannan and S. Vempala

Hence, for s ≥ (c lnn)/ε2, with high probability we have

‖CCT −AAT ‖2 ≤ ε‖A‖2‖A‖F . (4.8)

Proof. It is easy to see that

CCT −AAT =
s∑
i=1

Xi,

where the Xi are i.i.d. copies of X defined in (4.4). Then

Pr

(∥∥∥∥ s∑
i=1

Xi

∥∥∥∥
2

≥ ε‖A‖2‖A‖F
)

≤ n e−tε‖A‖2‖A‖F (‖E(etX1)‖s2 + ‖E(e−tX1)‖s2)
(for any t > 0, by Theorem 4.1)

≤ 2n e−tε‖A‖2‖A‖F et
2‖A‖22‖A‖2F /s

(provided t ≤ s/‖A‖2F , by Proposition 4.3 and (4.7))

≤ 2n e−ε
2s/4,

setting

t =
εs

2‖A‖F ‖A‖2
≤ s

‖A‖2F
.

So we see that for s ≥ (c lnn)/ε2 and a large enough constant c, with high
probability,

‖CCT −AAT ‖2 ≤ ε‖A‖2‖A‖F .

5. Preconditioned length-squared sampling

In this section we show how to solve problem (1.3). We first discuss a
principal motivation.

5.1. Relative error in the residual

We have seen that if we sample a set of columns of A and scale them to
form an m× s matrix C, the restriction of A to the column space of the top
k right singular vectors of C is a good approximation to A, in the sense of
Theorem 2.1. But the error is in terms of ‖A‖F . In this section we see how
to get errors of the form O(‖A−Ak‖F ), where Ak denotes the best rank-k
approximation to A. Of course, we can get such errors by using the SVD of
A. The point here is that we will see that a random sample corresponding
to preconditioned length-squared sampling on Ak (instead of A) gives us a
subset of columns of A in whose span we find an O(‖A−Ak‖F )-type error.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492917000058
Downloaded from https:/www.cambridge.org/core. IP address: 107.213.140.18, on 21 May 2017 at 02:30:14, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492917000058
https:/www.cambridge.org/core


Randomized algorithms in numerical linear algebra 123

There are at least three approaches to getting such a relative error bound.
The first is to use length-squared sampling iteratively (Deshpande et al.
2006). In this approach, after performing length-squared sampling on the
initial matrix A to obtain a sample S1, the columns of A are sampled again,
but this time with probability proportional to their squared lengths in the re-
sidual, that is, after orthogonal projection onto the span of S1. This process
is repeated, and results in a geometrically decaying error factor with each
round. Such an approach was also used by Li, Miller and Peng (2013). More
recent papers analyse a similar approach with uniform sampling (Cohen
et al. 2015, Cohen, Musco and Musco 2017).

The second approach is volume sampling, which extends length-squared
sampling by picking subsets of k columns jointly (Deshpande and Vempala
2006). The probability of picking a k-subset is proportional to the squared
volume of the k-dimensional simplex induced by the columns along with
the origin, a generalization of length-squared sampling. This single sample
approach has expected squared error (k + 1)‖A − Ak‖2F , the best possible
bound using k columns of the matrix. This can be improved by one round
to length-squared sampling in the residual to (1 + ε) (relative error) using
O(k/ε) samples.

The third approach (Drineas et al. 2008), which we present here, uses
only one round of length-squared sampling, but the lengths are accord-
ing to a different matrix, which can be viewed as a preconditioned version
of the original matrix, and corresponds to sampling columns according to
their leverage scores. Before we go to the main proof of the preconditioned
length-squared sampling method, we discuss its application to low-rank ap-
proximation in more detail.

Let S be the n×s column selector (no scaling of columns) matrix, so that
C = AS. Let Vk be the n × k matrix with top k right singular vectors of
A as columns. The probability of picking column j of A to include in C is
according to the squared length of column j of A+

k Ak = VkV
T
k , where A+

k
is the pseudo-inverse of A. Since Vk has orthonormal columns, this is the
same as the squared length of column j of V T

k . Then the approximation to
A in the column space of C is

X = C(V T
k S)+V T

k .

The error is bounded as follows:

A−X = A−AS(V T
k S)+V T

k

= A− (AVkV
T
k + (A−Ak))S(V T

k S)+V T
k

= A−AVkV T
k − (A−Ak)S(V T

k S)+V T
k

= (A−Ak)︸ ︷︷ ︸
X1

− (A−Ak)S(V T
k S)+V T

k︸ ︷︷ ︸
X2

.
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124 R. Kannan and S. Vempala

Then

‖X1‖F = ‖A−Ak‖F ,
‖X2‖F ≤ ‖(A−Ak)S‖F ‖(V T

k S)+V T
k ‖2︸ ︷︷ ︸

X3

.

Hence E(‖(A− Ak)S‖F ) ≤ ‖A− Ak‖F . Now, X3 = 1/σmin(V T
k S) (the last

V T
k can be omitted since it has orthonormal rows). We can bound this as

follows:

X3 =
1√

λmin(V T
k SS

TVk)
.

Noting that VkV
T
k = Ik, we can view this as selecting columns (as in S)

according to length-squared sampling on Vk to multiply V T
k by Vk. By

the guarantee for approximate matrix multiplication using length-squared
sampling, the error is at most (2 + ε)‖A− Ak‖F . This can be improved to
(1 + ε)‖A−Ak‖F .

5.2. Leverage score sampling

Here we present the main guarantee for sampling according to the leverage
scores, that is, the preconditioned squared lengths.

Theorem 5.1. Suppose A is any d × n matrix with rank r and SVD
A =

∑r
t=1 σtutv

T
t , and W is an n × d symmetric matrix

∑r
t=1 σt

−1 vtu
T
t .5

Let pj , j = 1, 2, . . . , n be defined by6

pj =
|(WA)(:, j)|2

‖WA‖2F
.

If ε ∈ [0, 1] and s ≥ (cr lnn)/ε2, and we draw s columns of A in i.i.d. trials,
with probabilities {pj}, scale the chosen column j of A by 1/

√
spj , and form

a d× s matrix C with these scaled columns, then with high probability we
have

‖xTC‖2 ∈
[
(1− ε)‖xTA‖2, (1 + ε)‖xTA‖2

]
, for all x.

Remark. The pj are proportional to the squared lengths of columns of WA,
but the actual sampling picks corresponding columns of A.

Proof. Let V be the space spanned by columns of A. Write vector x as
x = z + y, with z ∈ V and y orthogonal to V . Clearly, ‖xTA‖ = ‖zTA‖
and ‖xTC‖ = ‖zTC‖. So it suffices to prove the theorem assuming x ∈ V .

5 W is the pseudo-inverse of A.
6 We call pj the ‘preconditioned length-squared’ probabilities.
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For any x ∈ V , there is a y ∈ span(v1,v2, . . . ,vr) such that xT = yTW .
Note that

WA =
r∑
t=1

vtv
T
t ,

so ‖WA‖22 = 1 and ‖WA‖2F = r. Apply Theorem 4.4 to WA with the ε
of that theorem set to the ε here divided by

√
r. Since s ≥ r lnn/ε2, the

hypothesis of Theorem 4.4 is satisfied. Thus

‖WC(WC)T −WA(WA)T ‖2 ≤ ε,

which implies

|‖yTWC‖2 − ‖yTWA‖2| ≤ ε‖y‖2 = ε‖yT (WA)‖2, for all y,

since, for y ∈ span(v1,v2, . . . ,vr),

‖yTWA‖ = ‖y‖.

This implies the theorem.

6. Subspace embeddings and applications

The methods of the previous section allow us to get relative errors in the
residual, but can be more expensive computationally. They can be imple-
mented in time dominated by the number of non-zeros of the input matrix
times k/ε for a rank-k approximation. In this section we will see methods
to improve this to only the order of the number of non-zeros in A (i.e. input
sparsity time) plus lower-order terms that depend only on one of the dimen-
sions of A. The guarantee is slightly weaker, but suffices for applications.

6.1. Very sparse subspace embeddings

Suppose A is an n × d given data matrix. For this section we assume that
n is much larger than d, so A is a tall skinny matrix. For positive reals a, b,
we say a ∼=ε b if a ∈ ((1− ε)b, (1 + ε)b).

Definition 6.1. A t × n matrix S is a subspace embedding (for A) with
error ε if

‖SAx‖ ∼=ε ‖Ax‖, for all x ∈ Rd.

We aim to bound t by a function of only d and ε. The point of subspace
embedding is as follows: we can compute with SA instead of A, and if
t� n, the matrix SA, which is t×d, is much smaller than A. For example,
if we want to find the top singular value (vector) of A within relative error
ε, we can work on SA instead of A. The next theorem is from Clarkson and
Woodruff (2013).
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126 R. Kannan and S. Vempala

Theorem 6.2 (Clarkson and Woodruff). For a matrix A of rank r,
the following matrix S is a subspace embedding with high probability pro-
vided t ≥ poly(r/ε). For each j ∈ {1, 2, . . . , n}, pick an i ∈ {1, 2, . . . , d}
uniformly at random, and set Sij = ±1 with probability 1/2. Then, with
high probability,

‖SAx‖ ∼=ε ‖Ax‖, for all x ∈ Rd.

Remarks.

(i) Note that the theorem states that, with high probability, ∼=ε for all x.
It is a much stronger statement than saying ‘for each x, ∼=ε holds, with
high probability’.

(ii) Note that the construction of S is ‘oblivious’, i.e., independent of A.

(iii) Since S has only one non-zero entry per column, SA can be computed
in time equal to a constant times the number of non-zero entries of
A (often denoted nnz(A)), using a sparse representation of the input
matrix.

Subspace embeddings as presented here are due to Clarkson and Woodruff
(2013) using the work of Dasgupta, Kumar and Sarlós (2010). For further
improvements and applications, see Woodruff (2014).

6.2. Elementary subspace embedding via Johnson–Lindenstrauss

First, we prove a simpler theorem using the Johnson–Lindenstrauss random
projection theorem. It says that we can project high-dimensional vectors to
a lower-dimensional space and still preserve lengths approximately.

The projection f : Rn → Rk that we will examine (in fact, many re-
lated projections are known to work as well) is as follows. Pick k vectors
u1,u2, . . . ,uk in Rn, by choosing all the nk coordinates independently, each
from the Gaussian distribution

1

(2π)n/2
exp(−‖x‖2/2).

Then, for any vector v in Rn, we define the projection f(v) by

f(v) = (u1 · v,u2 · v, . . . ,uk · v). (6.1)

We will show that with high probability ‖f(v)‖ ≈
√
k‖v‖, so if we have to

find, say, ‖v‖, it suffices to find ‖f(v)‖ (since the factor of
√
k is known).

The original proof was to project v onto a random k-dimensional subspace of
Rn. The proof is more complicated for that situation, since projecting onto
a random subspace is not equivalent to picking k vectors independently at
random and taking dot products. The bound below for a Gaussian random
projection is simpler to prove, and still has the same set of applications
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(Indyk and Motwani 1998, Arriaga and Vempala 1999, Dasgupta and Gupta
2003, Arriaga and Vempala 2006, Vempala 2004).

Theorem 6.3 (Johnson–Lindenstrauss). Let v be a fixed vector in Rn
and let f be defined by (6.1). Then, for ε ∈ (0, 1),

Pr
(∣∣‖f(v)‖ −

√
k‖v‖

∣∣ ≥ ε√k‖v‖) ≤ 2 e−(ε
2−ε3)k/4,

where the probability is taken over the random draws of vectors ui used to
construct f .

Proof. See Dasgupta and Gupta (2003, Theorem 2.1).

The theorem deals with one vector. However, subspace embeddings have
to work for infinitely many vectors. We cannot do a simple union bound
because the number of vectors is infinite. Instead, we use what is called an
ε-net.

Definition 6.4. A set N of unit vectors is an ε-net for the unit sphere
S = {x ∈ Rd : ‖x‖ = 1} if, for any x ∈ S, there exists y ∈ N such that
‖x− y‖ ≤ ε.

The next lemma bounds the size of the ε-net for a sphere.

Lemma 6.5. There is an ε-net N with |N | ≤ (1 + 2/ε)d.

Proof. The proof is by taking a maximal set N of points that are pairwise
ε-separated and using a volume argument (see e.g. Lemma 4.10 of Pisier
1989), that is, balls of radii ε/2 centred at each point of the net are disjoint
and the union of all these balls is contained in a ball of radius 1 + (ε/2).
Hence

|N | ≤
(

1 + ε/2

ε/2

)d
=

(
1 +

2

ε

)d
.

Now we may apply Theorem 6.3 as follows. Suppose V is a d-dimen-
sional subspace of Rn, for example, V = {Ax} for an n × d matrix A.
The set of unit vectors in V has an ε-net N of size at most ecd ln(1/ε).
Choose k ≥ cd ln(1/ε)/ε2 so that, for a single x ∈ V , the probability that
‖Mx‖ 6∼=ε

√
k‖x‖ is at most 1/|N |2. Then, just by union bounds, we get

Pr
(
for all x ∈ N, ‖Mx‖ ∼=ε

√
k‖x‖

)
≥ 1− 1

|N |
.

Now f(v) can be written as a matrix product, f(v) = Mv, where M is
a k × n matrix with u1,u2, . . . ,uk as its rows. We claim that the above
suffices to prove that ‖Mx‖ ∼=3ε

√
k‖x‖ for every x ∈ V .

Here is a first attempt to prove the claim. For any x ∈ V , there is some
y ∈ N with ‖x− y‖ ≤ ε. So, ‖Mx‖ = ‖My‖+ δ, where |δ| ≤ ‖M(x− y)‖.
But bounding ‖M(x− y)‖ needs a good bound on ‖M‖2 which we do not
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128 R. Kannan and S. Vempala

yet have. Instead, we will see that by repeated use of the ε-net, we can
write x as a convergent series of linear combinations of elements in N .

First, there exists a y(1) ∈ N with ‖x− y(1)‖ = θ1 ≤ ε. Now there exists
a y(2) ∈ N with ∥∥∥∥y(2) − x− y(1)

θ1

∥∥∥∥ = θ2 ≤ ε.

Continuing, we get that x = y(1) + θ1y
(2) + θ1θ2y

(3) + · · · , where θi ∈ [0, ε].
Therefore,

1√
k
‖Mx‖ =

1√
k

∥∥M(y(1) + θ1y
(2) + · · · )

∥∥
≥ 1√

k

(
‖My(1)‖ − θ1‖My(2)‖ − θ1θ2‖My(3)‖ − · · ·

)
≥ (1− ε)− (1 + ε)(θ1 + θ1θ2 + θ1θ2θ3 + · · · )
≥ 1− 3ε.

A similar argument also proves an upper bound of 1 + 3ε on ‖Mx‖.
Now we return to the situation where A is an n×d matrix of rank r. The

set {Ax : x ∈ Rd} is an r-dimensional subspace of Rn. Hence, by the above,
as long as k ≥ poly(r/ε), we deduce that M is a subspace embedding for A.
But M is dense, and computing MA is costly (and in general, superlinear).

6.3. Sparse embeddings

Now consider the sparse matrix S defined in Theorem 6.2. Let V be the
subspace spanned by the columns of A. Unfortunately, we cannot carry out
the same sort of argument as above, because it is not true that for every
(individual) x ∈ V we have

Pr(‖Sx‖ 6∼=ε ‖x‖) ≤ exp(−cd).

Counter-examples are ‘lumpy’ x with some ‘big’ coordinates: for example,
if x1 = x2 = 1/

√
2, with probability poly(1/t), we could have S11, S12 6= 0,

whence ‖Sx‖ 6∼=ε |x|. On the other hand, ‘non-lumpy’ x – with, say, all
‖xi‖ ≤ c‖x‖/

√
n – can be shown to satisfy Pr(‖Sx‖ 6∼=ε ‖x‖) ≤ exp(−cd).

We do not do this since it is not required for our proof.
Here is a simple and crucial point.

Lemma 6.6. Suppose α ∈ [0, 1]. There is a subset H of {1, 2, . . . , n} with
|H| ≤ d/α such that

|(Ax)i| ≤
√
α‖Ax‖, for all x and all i /∈ H.

The lemma asserts that only coordinates in H (for heavy) can be bigger
than

√
α‖Ax‖ in absolute value. Note that H is independent of x.
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Proof. Let r = rank(A). Form an n × r matrix U with the left singular
vectors of A as its columns. Since ‖U‖2F = r, we have that7

H = {i : ‖U(i, :)‖ ≥
√
α} satisfies |H| ≤ r/α ≤ d/α. (6.2)

We assert that this H satisfies the conclusion of the lemma. For any x, we
have that Ax is a linear combination of the columns of U , and so Ax = Uz
for some z. Since the columns of U are orthonormal, we have ‖z‖ = ‖Ax‖.
Also (Ax)i = U(i, :)T z, and so for i 6∈ H,

|(Ax)i| ≤ ‖U(i, :)‖‖z‖ ≤
√
α‖Ax‖.

Let [n] \H = L (L for light). We can write any y in the column space of
A as the sum of two vectors yH ,yL, where yHi = yi for i ∈ H and yHi = 0
for i ∈ L, and similarly yL is y restricted to L. Then

‖Sy‖2 = ‖SyH‖2 + ‖SyL‖2 + 2(SyH)T (SyL). (6.3)

We deal with each of these three terms. For each j ∈ {1, 2, . . . , n}, we picked
an i ∈ {1, 2, . . . , t} at random and set Si,j = ±1. It will be convenient to
call the i we picked the ‘hash of j’. Since n � t, j ∈ {1, 2, . . . , n} and
i ∈ {1, 2, . . . , t}, it resembles a random hash function.

Lemma 6.7. With probability at least 1 − (|H|2/t), we have ‖SyH‖ =
‖yH‖ when y = Ax.

Proof. The probability that the hashes of two different j ∈ H are the same
is at most |H|2/t, and we will choose t > c|H|2, so the probability of this
hash collision is small. (Recall the ‘birthday paradox’.) Note that this event
has nothing to do with a particular y. If there is no hash collision, then the
submatrix of S in the columns corresponding to H is just a permutation
matrix (with signs), and the lemma follows.

For bounding the other two terms of (6.3), the following theorem due
to Dasgupta et al. (2010) (which we do not prove here) is useful. Call a
vector y = Ax non-lumpy if no coordinate of y is too big in absolute value.
The theorem asserts that with high probability, for all non-lumpy vectors
simultaneously, we have bounds on the difference ‖Sy‖ − ‖y‖. Since we
have already taken care of the heavy coordinates, this will help us take care
of the rest.

Theorem 6.8 (Theorem 2 of Dasgupta et al. 2010). Suppose ε, δ ∈
(0, 1) and t ≥ 12 log(1/δ)/ε2, and let S be a t × n matrix chosen as in
Theorem 6.2. Suppose y is any vector in Rn with |yi| ≤

√
α, where 1/α =

16 log(1/δ) log2(t/δ)/ε. Then

Pr(
∣∣‖Sy‖ − ‖y‖

∣∣ ≥ ε) ≤ 3δ.

7 U(i, :) is the ith row of U .
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Remark. The theorem is for one vector y. It is a sparse version of Johnson–
Lindenstrauss, and finds other uses as well.

To prove that the probability result holds simultaneously for all y, we
apply Theorem 6.8 as follows.

(i) We examine the construction of an ε-net to see that if we want to cover
only non-lumpy y (each |yi| ≤

√
α) in a d-dimensional subspace of Rn

(like {Ax}), then we can get the same size net with all coordinates of
vectors in the net having absolute value at most 2

√
α.

(ii) We choose δ ≤ exp(−cd ln d/ε2) and apply Theorem 6.8 to show that,
for each non-lumpy y in the net, the probability of failure is at most
δ. Then use the union bound over all elements of the net.

(iii) Finally, we use the argument of Section 6.2 to write any non-lumpy y
as a convergent series of linear combinations of net elements, and use
this to conclude that the following holds.

Theorem 6.9. Suppose ε ∈ (0, 1) and t = poly(d/ε) and α = poly(ε/d)
satisfying8

t ≥ d

αε2
,

1

α
≥ c(log2 t)(d3(ln d)3/ε6). (6.4)

Let S be a t× n matrix chosen as in Theorem 6.2. Then,

Pr
(
for all y, with |yi| ≤

√
α, ‖Sy‖ ∼=ε ‖y‖

)
≥ 1− ε.

Theorem 6.9 can be used to imply immediately that

|‖SyL‖ − ‖yL‖| ≤ cε, for all y ∈ {Ax}.

This takes care of the second term on the right-hand side of (6.3).
The third term requires a further argument. Let

L′ = {j ∈ L : the hash of j = the hash of some j′ ∈ H}.

Note that L′ depends only upon the choices made for S, that is, it does
not depend on any particular y. We make three assertions, all holding with
high probability:

|(SyH)T (SyL)| = |(SyH)T (SyL
′
)| ≤ ‖SyH‖ ‖SyL

′‖ ≤ ‖SyL
′‖, (6.5)

‖SyL
′‖ ≤ O(ε) + ‖yL′‖, (6.6)

‖yL′‖ ≤ ε. (6.7)

Statement (6.5) is easy to check. For (6.6), note that for a j ∈ L′ conditioned
on its hash being one of the |H| hashes of j′ ∈ H, it is uniform random.
So, S restricted to columns in L′ is an |H| × |L′| matrix constructed the

8 It is easy to see that t, α satisfying these inequalities exist.
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same way as the whole of S: pick a random row for each column and set
the entry in that row and column to ±1 with probability 1/2 each. So we
may apply Theorem 6.9 to this situation to get (6.6). If the actual |H| is
much smaller than the upper bound in (6.2), we can just augment it to get
to size cd ln d/ε2. Statement (6.7) will follow using a version of Bernstein’s
inequality (often called Freedman’s inequality) from probability theory, as
follows.

Lemma 6.10. Suppose Y1, Y2, . . . , Yn are independent real-valued random
variables with |Yi| ≤ M . Let b = Var(

∑n
i=1 Yi), and let a be any positive

real number. Then

Pr

(∣∣∣∣ n∑
i=1

Yi

∣∣∣∣ ≥ a) ≤ 2 exp

(
− a2

2(aM + b)

)
.

Proof. See Freedman (1975).

To prove (6.7), consider a single y first. Since for j ∈ L, yL
′

j = yj1(j ∈ L′)
(where 1 is an indicator random variable), we obtain

Var((yL
′

j )2) ≤ y4j
|H|
t
≤ y4j

d

tα
≤ ε2y4j ,

using (6.2) and (6.4). Thus

Var

(∑
j∈L

(yL
′

j )2
)
≤ ε2

∑
j

y4j ≤ ε2|y|2α ≤ αε2.

Hence Lemma 6.10 with a = ε2 implies that

Pr(‖yL′‖2 ≥ ε2) ≤ 2 exp(−cε4/(ε2α+ ε2α)) ≤ 2 exp(−cd ln d/ε2).

This probability is small enough that we can take a union bound over an
ε-net and then extend to all vectors again by expressing the vector as a
convergent series of net vectors.

7. Conclusion

The goal of this survey is to convey some core ideas of using random
sampling to obtain fast algorithms for matrix problems in numerical linear
algebra. These algorithms work for arbitrary input matrices (and tensors
where appropriate). They are randomized approximation algorithms with
a probability of failure that can be controlled by using a larger sample.

The problems and their randomized algorithms have many applications,
including machine learning, combinatorial optimization, solving linear sys-
tems and graph decompositions. For a more extensive discussion of these
applications we refer the reader to Kannan and Vempala (2009), Mahoney
(2011), Vishnoi (2013) and Woodruff (2014).
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Randomized numerical linear algebra is now a large and active field. The
basic theorems presented here have also been extended in many ways. We
mention some of them briefly.

Achlioptas and McSherry (2007) gave a different method for additive
error low-rank approximation based on sparsifying the original matrix by
sampling each entry independently. The CUR approximation has been im-
proved by Boutsidis and Woodruff (2014). For multiplicative error low-rank
approximation, the methods based on iterative length-squared sampling,
volume sampling and preconditioned length-squared sampling all require
two or more passes over the data. Sarlós (2006) gave the first algorithm
that uses only one pass over the data and gives a multiplicative error. Desh-
pande and Rademacher (2010) showed that volume sampling can be imple-
mented efficiently with random projections, while Anari et al. (2016) gave a
Markov chain method to sample efficiently from the volume sampling distri-
bution. Drineas, Magdon-Ismail, Mahoney and Woodruff (2012) improved
the complexity of preconditioned length-squared sampling (leverage score
sampling). While the original method of Spielman and Srivastava for graph
sparsification was a polynomial-time algorithm establishing an asymptot-
ically optimal bound on the size of the sparse graph, Lee and Sun (2015)
have improved the running time to almost linear. For sparse embeddings,
the work of Clarkson and Woodruff described here has been improved by
Meng and Mahoney (2013), Nelson and Nguyên (2013) and further by Co-
hen (2016). In related work, Tropp (2011) and Kane and Nelson (2014) have
improved the sparsity of random projection matrices for Euclidean length
preservation.
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