Practice problems don’t turn in:

P1. [DPV] Problem 8.10 part (a) (Subgraph isomorphism)

P2. [DPV] Problem 8.4 part (c) (Clique-3)
Problem 1 [DPV] Problem 8.8 (Exact 4-SAT)

Solution:
Problem 2 [DPV] Problem 8.19 (Kite)

Solution:
Problem 3 4-COLORING

For integer $k > 0$, a k-coloring of an undirected graph $G = (V, E)$ is an assignment of a color $\sigma(v)$ to each vertex $v \in V$, where every color is from the set $\{1, 2, \ldots, k\}$ and for every edge $(v, w) \in E$, the endpoints v and w receive different colors (i.e., $\sigma(v) \neq \sigma(w)$).

Consider the k-COLORING problem defined for integer $k > 0$:
Input: An undirected graph $G = (V, E)$.
Output: A k-coloring σ of G if one exists, and NO if no k-coloring exists.

The 3-COLORING problem is NP-complete.

Prove that the 4-COLORING problem is NP-complete, using the fact that the 3-COLORING problem is NP-complete.

(Note, the input is a graph G you cannot force a vertex to have a specific color.)

Solution: