To prove Clique is NP-complete, need to show:

a) Clique ∈ NP:
 - can verify solutions in poly-time

b) ∀A ∈ NP, A → Clique.
 - take known NP-complete problem B & show:
 B → Clique.

Thus, if can solve Clique in poly-time then can solve every A ∈ NP in poly-time.
In other words, if P ≠ NP then Clique cannot be solved in poly-time.
Shows that clique is intractable.

We used Independent Set to prove Clique is NP-complete.

Later: SAT → 3SAT to show 3SAT is NP-complete & 3SAT → Independent Set to show Independent set is NP-complete.
Vertex Cover (VC):

For $G=(V,E)$, $S \subseteq V$ is a vertex cover if it covers every edge:

- for every edge $(x, y) \in E$, either $x \in S$ &/or $y \in S$.

(Also one or both endpoints are in the VC)

Example:

$S = \{a, b, d, e, f\}$ is a vertex cover.

$S' = \{b, d, f\}$ is a vertex cover of min size.

Want to find smallest vertex cover.
Vertex Cover Problem:

Input: \(G = (V,E) \) & goal/budget \(b \)

Output: Vertex cover \(S \) of size \(\leq b \) if one exists

No otherwise.

Theorem: Vertex Cover is \(NP \)-complete.

Proof:

a) \(VC \in NP \):

Given \(G, b, S \) in \(O(n+m) \) time we can check for every edge \((x,y) \in E \) that \(x \in S \) &/or \(y \in S \).

b) **Independent Set \(\rightarrow \) Vertex Cover.**

Given input \((G,g) \) for IS,

run Vertex Cover on \((G, n-g) \)

For solution \(S \) to VC, output \(S \) as solution to IS

& if NO solution to VC, then NO solution to IS.
Claim: S is a vertex cover of size $|S| \leq b$ where $b = n - q$ if and only if S is an independent set of size $|S| \geq g$.

Proof:

\Rightarrow Consider VCS in G. Hence, for every $(x, y) \in E$, $x \in S$ or $y \in S$ and thus $x \notin S$ or $y \notin S$. Therefore, S is an independent set.

And if $|S| \leq n - g$ then $|S| \geq g$.

\Leftarrow Consider independent set S in G. Hence, for every $(x, y) \in E$, $x \in S$ or $y \in S$. Thus, $x \in S$ or $y \in S$ and S is a VC. And if $|S| \geq g$ then $|S| \leq n - g$. \blacksquare
Let's start back at the beginning (almost). Assume SAT is NP-complete.
Let's now prove 3SAT is NP-complete.

SAT:

input: Boolean formula \(f \) in CNF with:
- \(n \) variables \(x_1, \ldots, x_n \)
- \(m \) clauses \(C_1, \ldots, C_m \)

output: satisfying assignment for \(f \) if one exists
NO if none exist.

3SAT:

input: \(f \) in CNF with \(x_1, \ldots, x_n, C_1, \ldots, C_m \)
where for every clause \(|C_i| \leq 3 \)
\((\leq 3 \) literals per clause\)

output: satisfying assignment if one exists
NO if none exist.
Theorem: 3SAT is NP-complete

Proof:

a) $3\text{SAT} \in \text{NP}$:

Given f & assignment σ, for each clause C_i, we can check in $O(1)$ time that at least one literal in C_i is satisfied by σ.

Hence in $O(m)$ total time we can check that σ satisfies every clause.

b) $\text{SAT} \rightarrow 3\text{SAT}$.

Consider input f to SAT. We will create input f' for 3SAT.

Denote variables in f as x_1, \ldots, x_n

& clauses as C_1, \ldots, C_m.

For clause C_i if $|C_i| \leq 3$ then we can leave it as is for 3SAT input f'.

What if $|C_i| > 3$?
Take for example $C_i = (\overline{x_3} \lor x_2 \lor x_5 \lor \overline{x_1})$.

Let's create a new variable call it y_i.

Consider the pair of clauses:

$$S_i = (\overline{x_3} \lor x_2 \lor y_i) \land (x_5 \lor \overline{x_1} \lor y_i)$$

Claim: C_i is satisfiable $\iff S_i$ is satisfiable.

(\Rightarrow) Take an assignment to x_3, x_2, x_5, x, satisfying C_i.

Use that same assignment in S_i. At least one of the clauses in S_i is satisfied & we can use y_i to satisfy the other.

(\Leftarrow) Take an assignment to x_3, x_2, x_5, x, y_i satisfying S_i.

Note $y_i = T$ or $y_i = F$ satisfying the 1st or 2nd clause, but the other clause must be satisfied by x_3, x_2, x_5 or x_1. That same literal will satisfy C_i.

What if \(|C| = 5\)?

Example: \(C_i = (x_3 \vee x_2 \vee \overline{x}_5 \vee x_1 \vee \overline{x}_6)\).

We'll add 2 new variables \(y_{i,1}\) & \(y_{i,2}\)

We'll replace \(C_i\) by these 3 clauses:

\[S_i = (x_3 \vee x_2 \vee y_{i,1}) \land (y_{i,1} \vee x_5 \vee y_{i,2}) \land (y_{i,2} \vee x_1 \vee \overline{x}_6)\]

Note, \(y_{i,1}\) & \(y_{i,2}\) satisfy \(\leq 2\) of the clauses

(can set to satisfy any 2 we want)

& the remaining clause must be satisfied

by \(x_3, x_2, x_5, \overline{x}_1, \) or \(\overline{x}_6\).

In general, for clause \(C_i = (a_1 \vee a_2 \vee \ldots \vee a_k)\)

where \(k > 3\) & \(a_1, \ldots, a_k\) are the literals

\((s_0 a_1 = \overline{x}_3, a_2 = \overline{x}_2, a_3 = x_5, a_4 = \overline{x}_1, a_5 = \overline{x}_6)\)

in above example.
add \(k-3 \) new variables: \(Y_{i1}, Y_{i2}, \ldots, Y_{i,k-3} \)
and replace \(C_i \) by \(k-2 \) clauses:
\[
S_i = (a, va_{a_2} v Y_{i1}) \land (\overline{Y_{i1}}, va_{a_3} v Y_{i2}) \land (Y_{i2}, va_{a_4} v Y_{i3}) \land \ldots \land (\overline{Y_{i,k-4}}, va_{a_{k-2}} v Y_{i,k-3}) \land (Y_{i,k-3}, va_{a_{k-1}} v a_k)
\]
We do this for every clause \(C_i \) where \(|C_i| > 3 \),
& if \(|C_i| \leq 3 \) then leave as is.
This gives a new formula \(f' \).
Note \(f' \) has \(\leq n + m(n-3) = O(nm) \) variables
\& \(\leq O(nm) \) clauses.

Run 3SAT on \(f' \).
Ignore the settings for the new variables \(Y_i \)'s.
Take the setting for the original variables \(X_1, \ldots, X_n \)
& this satisfies \(f' \).
If NO for \(f' \) then return NO for \(f \).
Claim: f is satisfiable $\iff f$ is satisfiable

\Rightarrow Take setting of x_1, \ldots, x_n that satisfies C_1, \ldots, C_m.
Consider $C_i = (a_1 \lor a_2 \lor \ldots \lor a_k)$.
≥ 1 of a_1, \ldots, a_k is satisfied & this satisfies ≥ 1 clause in S_i. Use y_i's to satisfy other $k-3$ clauses in S_i.

\Leftarrow For setting of y_i's & a_1, \ldots, a_k that satisfies S_i.
Note y_i's satisfy $\leq k-3$ clauses of S_i.
Thus ≥ 1 of a_1, \ldots, a_k is satisfied & this also satisfies C_i. \Box