Median:
- Given an unsorted list \(A = [a_1, \ldots, a_n] \) of \(n \) numbers, find the median of \(A \).
 (for concreteness, say the median is the \(\frac{n-1}{2} \)-th smallest)

Useful to solve the following more general problem:
- Given unsorted \(A \) & integer \(k \) where \(1 \leq k \leq n
 find the \(k \)-th smallest of \(A \).

Easy alg.: Sort \(A \) & output \(k \)-th element of sorted array.
\(\Rightarrow \mathcal{O}(n \log n) \) time.

This lecture: \(\mathcal{O}(n) \) time algorithm due to
[Blum, Floyd, Pratt, Rivest, & Tarjan '73]

D&C approach reminiscent of Quicksort:
Quicksort: - Choose pivot \(p \)
 - Recursively sort \(A < p \) & \(A > p \).
Since searching instead of sorting we only need to consider 1 subproblem.

QuickSelect *(A,k)*:

1. Choose a pivot *p* (How? This is the challenging step)
2. Partition A into *A*_\(<p*, *A*_\=p*, & *A*_\>p*.
3. If \(|A\<p*| < k \leq |A\<p*| + |A\=p*| \) then

 return **QuickSelect** *(A\<p*, k)*

 If \(|A\<p*| < k \leq |A\<p*| + |A\=p*| \) then

 return *(p)*

 If \(|A\<p*| + |A\=p*| < k \) then

 return **QuickSelect** *(A\>p*, k-|A\<p*|-|A\=p*|)*

Example: \(A = [5,2,20,17,11,13,8,9,11]\)

Say *p* = 11, \(A\<p* = [5,2,8,9]\), \(A\=p* = [11,11]\), \(A\>p* = [20,17,13]\)

if \(k \leq 4\) then we know it's \(k^{th}\) smallest in \(A\<p*\)
if \(k = 5\) or \(6\), then we know it's here
if \(k > 6\), then we want \((k-6)^{th}\) smallest in
Want $O(n)$ running time so aim for a recurrence such as:

$$T(n) = T\left(\frac{n}{2}\right) + O(n)$$

But note

$$T(n) = T(0.99n) + O(n)$$

also solves to

$$T(n) = O(n)$$

For any constant $a < 1, T(n) = T(an) + O(n) = O(n)$.

We'll create 2 subproblems of sizes an & bn where $a+b < 1$ and use that

$$T(n) = T(an) + T(bn) + O(n) = O(n)$$

when $a+b < 1$.

Our goal is to find a good pivot meaning:

P is a good pivot if $|A_p| \leq \frac{3}{4} n$ & $|A_{\bar{p}}| \leq \frac{3}{4} n$.

If we can find a good pivot in $O(n)$ time, then we have:

$$T(n) = T\left(\frac{3}{4}n\right) + O(n) = O(n)$$

In fact we can spend $O(n) + T(0.2n)$ time to find a pivot, then

$$T(n) = T\left(\frac{3}{4}n\right) + T(0.2n) + O(n) = O(n)$$.
How to get a good pivot - try random one?

Pick random element r of A.

What's $\Pr(r \text{ is a good pivot})$?

Think of sorted A:

- smallest $\frac{1}{4}$
- median $\frac{1}{2}$
- largest $\frac{3}{4}$

Exactly $\frac{1}{2}$ good pivots.

$\Pr(r \text{ is a good pivot}) = \frac{n/2}{n} = \frac{1}{2}$

So with prob $\frac{1}{2}$ get a good pivot.

Can check if so in $O(n)$ time.

If not repeat & try a new random element.

In expectation, try twice.

$\Rightarrow O(n)$ expected run time.

But $O(n^2)$ worst case running time.
Recall, aiming for recurrence:

\[T(n) = T(0.75n) + T(0.2n) + O(n) \]

which solves to \(T(n) = O(n) \).

So we can spend \(T(0.2n) + O(n) \) time to find a good pivot.

- Can choose a subset \(S \) of size \(0.2n \) and find \(\text{median}(S) \) as the pivot.

How to choose \(S \)?

Easy: Let \(S = [a_1, \ldots, a_{0.5}] = 1^{st} \frac{1}{5} \text{ elements of } A \).

But what if these are the \(\frac{n}{5} \) smallest (or largest) of \(A \).

Then: \(p = \text{median}(S) = \frac{10}{10^{th}} \text{smallest of } A \)

which is a bad pivot \((|A_p| = 0.9n) \)

Hard: Choose \(\frac{N}{5} \) random elements.

This works with high probability but hard to analyze, and is randomized.
Want a subset S that represents A.
For each $x \in S$, want x to "represent":
- a few elements of A which are $\geq x$
- a few which are $\leq x$

How to achieve this?

Break A into $\frac{N}{5}$ groups of 5 elements each & then choose a "representative" for each group.

How?

Sort each group & use its median m_i.
Why? it’ll have ≥ 2 that are $\leq m_i$ & ≥ 2 that are $\geq m_i$.

Takes $O(1)$ time to sort 5 elements
& thus $O(n)$ time to find these $\frac{N}{5}$ medians $\{m_1, m_2, ..., m_{\frac{N}{5}}\}$.

Then find $p = \text{median}(m_1, m_2, ..., m_{\frac{N}{5}})$.
That gives the pivot.
FastSelect(A,k):

1) Break A into \(\frac{n}{5} \) groups of 5 elements each.
 (assume \(n \) is a power of 5.)
 Call these groups \(G_1, G_2, \ldots, G_{\frac{n}{5}} \).

2) For \(i = 1 \rightarrow \frac{n}{5} \):
 a. Sort \(G_i \)
 b. Let \(m_i = \text{median}(G_i) \)

3) Let \(S = \{ m_1, m_2, \ldots, m_{\frac{n}{5}} \} \).

4) Let \(p = \text{FastSelect}(S, \frac{n}{10}) \). (Hence \(p \) is the median of \(S \)).

6) If \(k \leq |A < p| \) then
 \[\text{return}(\text{FastSelect}(A < p, k)) \]
 If \(|A < p| < k \leq |A < p| + |A = p| \) then
 \[\text{return}(p) \]
 If \(|A < p| + |A = p| < k \) then
 \[\text{return}(\text{FastSelect}(A > p, k-|A < p| - |A = p|)) \]
Claim: P is a good pivot.

Therefore the running time satisfies:

\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{3n}{4}\right) + O(n) \]

\[\uparrow \text{step 4} \uparrow \text{step 6} \]

Since \[\frac{1}{5} + \frac{3}{4} = 0.95 < 1 \]

Thus \[T(n) = O(n) \].

Proof of claim:

Sort \(G_1, \ldots, G_{\frac{n}{5}} \) by their medians so that:

\[m_1 \leq m_2 \leq \ldots \leq m_{\frac{n}{10}} \leq \ldots \leq m_{\frac{n}{5}} \]

Note \(p = \frac{m_{\frac{n}{10}}}{m_{\frac{n}{5}}} \).
Here's the Picture:

Sort by medians: \(m_1 \leq m_2 \leq \ldots \leq m_{n/10} \leq m_{n/5} \)

\& Sort within each group:

\[
G_i = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ \vdots \end{pmatrix}
\]

so: \(a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5 \leq m_i \)

Then all of these elements are \(\leq \sigma_i \cdot m_0 \)

\& there are \(\frac{1}{10} \times 3 = \frac{3n}{10} \) such elements.

Note, \(A_{>p} \) excludes these so:

\[
1A_{>p}1 \leq n - \frac{3n}{10} = \frac{7n}{10} < \frac{3}{4} n.
\]

\& similarly for \(A_{>p} \) using