We've seen:

\[
\begin{align*}
\text{SAT} & \quad \downarrow \\
\text{3SAT} & \\
\text{Subset-Sum} & \quad \text{Independent Set} \\
\text{Knapsack} & \quad \text{Clique} \\
& \quad \text{Vertex Cover}
\end{align*}
\]

Subset-sum:

Input: positive integers \(a_1, \ldots, a_n \) & \(t \)

Output: subset \(S \) of objects \(\{1, \ldots, n\} \)

where \(\sum_{i \in S} a_i = t \)

No if no such \(S \).

Using dynamic programming can solve in \(O(nt) \) time. But input size is \(O(n \log t) \).
Theorem: Subset-Sum is NP-complete

Proof:

a) Subset-Sum ∈ NP:

Given input \(\{a_1, \ldots, a_n, t, S\} \)

then in \(O(n \log t) \) time can check that

\[
\sum_{i \in S} a_i = t.
\]

b) 3SAT \(\implies \) Subset-Sum:

Take input \(f \) for 3SAT: variables \(x_1, \ldots, x_n \)

& clauses \(C_1, \ldots, C_m \)

Basic assumptions about \(f \) (o/w can simplify):

- No clause contains \(x_i \) & \(\overline{x_i} \)
 (if it does can drop the clause)

- Each \(x_i \) is in at least 1 clause
 (o/w can set \(x_i = F \))

& each \(\overline{x_i} \) is in at least 1 clause.
We'll create a subset-sum instance with:

numbers $v_1, v_2, \ldots, v_n, v_n, s_1, s_1, \ldots, s_m, s_m$

&

all $2n+2m+1$ numbers are base 10 & n+m digits.

v_i corresponds to $X_i : v_i \in S \Leftrightarrow X_i = 1$

$v_i' \Leftrightarrow \overline{X_i} : v_i' \notin S \Leftrightarrow \overline{X_i} = 0$

So need that v_i or v_i' in S but not both.

In ith digit of v_i, v_i' & put a 1
& all other numbers put a 0 in ith digit.

Digit $n+j$ corresponds to clause C_j:

if $X_i \in C_j$ then put a 1 in row $\overline{v_i}$ in digit $n+j$

if $X_i \notin C_j$ then put a 1 in row v_i in digit $n+j$.
Want that 1, 2, or 3 literals in G are included in S.

So put a 3 in digit $n+j$ of T.

& use S_j, S_j^* as buffers:

Put a 1 in digit $n+j$ of S_j.

Put 0 in digit $n+j$ for all other numbers.

Then to get a sum of 3 in digit $n+j$ need to include 1, 2, or 3 of literals in G & 0, 1, or 2 of S_j, S_j^*.

Example:

\[f = (x_1 v x_2 v x_3) \land (\overline{x_1} v x_2 v x_3) \land (x_1 v x_2 v x_3) \land (x_1 v x_2) \]

<table>
<thead>
<tr>
<th>(V_1)</th>
<th>(V_2)</th>
<th>(V_3)</th>
<th>(V_4)</th>
<th>(V_5)</th>
<th>(V_6)</th>
<th>(V_7)</th>
<th>(V_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[V_i = 1000011 \]
\[V_i = 1001100 \]

all blanks are zeros

+ = 11133333
3SAT input \(f \) is Satisfiable \(\iff \) Subset Sum \(\exists \{ y_1, y_2, \ldots, y_m \}, \{ s_1, s_2, \ldots, s_m \}, f \) has a solution

\[\Rightarrow \text{Consider satisfying assignment } \sigma \text{ for } f \]

- if \(\sigma \) sets \(x_i = T \) then add \(y_i \) to \(S \)
- if \(x_i = F \) then add \(y_i \)' to \(S \).

For clause \(C_j \), \(\geq 1 \) literal satisfied by \(\sigma \)

\[S \text{, 1-3 vertex numbers } v_1, v_2, \ldots, v_k, v_i \]

are in \(S \).

Add \(S_j \) &/ or \(S_j \)' to get a sum of \(3 \) in digit \(n+j \).

Note, max sum in a digit is \(\leq 5 \)

So digits are independent (no carry).

\[\Leftarrow \text{for 1st } n \text{ digits, if } v_i \in S \text{ then } x_i = T \]

- if \(v_i \in S \) then \(x_i = F \)

for digit \(n+j \) to get a sum of \(3 \)

need at least one of \(v_1, v_2, \ldots, v_k \) in \(S \)

So \(C_j \) is satisfied.
Knapsack

Input: \(w_1, \ldots, w_n, v_1, \ldots, v_n \) & \(B \) & \(V \)

Output: Subset \(S \) where \(\sum_{i \in S} w_i \leq B \) \& \(\sum_{i \in S} v_i \geq V \)

or **NO**.

Theorem: Knapsack is NP-complete.

Proof:

a) Knapsack \(\in \) NP:

In \(O(n \log B) \) time

Can check that \(\sum_{i \in S} w_i \leq B \)

\& in \(O(n \log V) \) time check that \(\sum_{i \in S} v_i \geq V \).

b) Subset-Sum \(\rightarrow \) Knapsack.

Take input \(\{a_1, \ldots, a_n, +, -\} \) for Subset-Sum.

Set \(v_i = w_i = a_i \) \& \(B = V = + \).

Then \(\sum_{i \in S} w_i \leq B \) \& \(\sum_{i \in S} v_i \geq V \) \(\iff \sum_{a_i = +} \)

\(\iff \sum_{a_i = -} \).