What's NP-completeness mean?
What's $P=NP$ or $P\neq NP$ mean?
How do we show a problem is intractable?

"unlikely to be solved efficiently"

P = class of all search problems that are solvable in polynomial time
NP = class of all search problems.

Search problem:
- roughly - problem where we can efficiently verify solutions.

Formally: Given instance I (e.g., graph G), we are asked to find a solution if one exists & if no solutions then output NO.

Moreover, if we are given solution S, we can verify in time polynomial in $|I|$ that S is a solution to I.
So given input instance \(I \) & solution \(S \)
we can verify that \(S \) is a solution to \(I \) efficiently = time \(\text{poly}(|I|) \).
if there are no solutions to \(I \) then we don't need to do anything.

How do we show this?

Give an algorithm that takes input \((I, S) \)
& in \(\text{poly}(|I|) \) time verifies that
\(S \) is a solution to \(I \)

(note, it must be that \(|S| = \text{poly}(|I|) \)
otherwise can't read all of \(S \).
Examples of search problems:

\[k \text{-coloring:} \]

Input: graph \(G = (V, E) \) & integer \(k \geq 0 \)

Output: assignment of a color \(\{1, 2, \ldots, k\} \) to each vertex so that adjacent vertices get different colors, and NO if no \(k \)-coloring of \(G \).

Claim: \(k \)-coloring \(\in \text{NP} \)

Proof: Given \(G \) & a \(k \)-coloring \(\sigma : V \rightarrow \{1, 2, \ldots, k\} \) in \(O(n+m) \) time we can check every edge & verify that the endpoints get different colors.
SAT:

input: Boolean formula f in CNF where f has n variables x_1, \ldots, x_n & m clauses C_1, \ldots, C_m

output: Satisfying assignment if one exists
 NO otherwise.

Claim: SAT in NP.

Proof: Given f & an assignment σ,
in $O(nm)$ time we can check each clause & verify that at least one literal satisfied in every clause.

What does CNF mean? conjunctive normal form.

$\land =$ AND, $\lor =$ OR

AND of clauses & OR within a clause.

Example:

$$(x_3 \lor x_2) \land (x_4) \land (x_3 \lor \overline{x_4} \lor x_1) \land (x_2 \lor x_4 \lor x_1)$$

\[\uparrow\]

$(x_3 = F \lor x_2 = T) \land (x_4 = T) \land (x_3 = T \lor x_4 = F \lor x_1 = T) \land (x_2 = T \lor x_4 = T \lor x_1 = F)$
Knapsack:

Input: n objects with integer weights w₁,...,wₙ, integer values v₁,...,vₙ, and capacity B.

Output: subset S of objects with total weight ≤ B and maximum total value.

Is knapsack in NP?

Given instance \(\sum wᵢ,...,wₙ, vᵢ,...,vₙ, B \) & subset \(S \) in time \(O(n \log B) \) can verify that the total weight ≤ B. But how do we verify that it has max value?

Could run DP-alg. in \(O(nB) \) time to compare the value obtained from DP to \(S \)'s value.

But \(O(nB) \) is exponential in the input size \(|I| = O(n \log B) \) number B takes \(O(\log B) \) bits.
Standard form of knapsack is optimization version.

Search version:

Knapsack-search:

Input: \(w_1, \ldots, w_n, v_1, \ldots, v_n, B, \text{ and } \text{goal } g \)

Output: subset \(S \) with:

- Total weight \(\leq B \)
- Total value \(\geq g \)

No if no such \(S \) exists.

Claim: Knapsack-search \(\leq_{NP} \)

Proof: Given \(\{ w_1, \ldots, w_n, v_1, \ldots, v_n, B, g \} \) and \(S \),

in \(O(AB) \) time can verify that \(\sum_{i \in S} w_i \leq B \)

\& in \(O(n \log B) \) time can verify \(\sum_{i \in S} v_i \geq g \).
Note, knapsack \implies knapsack-search.

This means that if we can solve knapsack-search in poly-time, then we can use it as a black-box to solve knapsack in poly-time — just do binary search for max \(g \in \{1, \ldots, V \} \) which has a solution where \(V = \sum_{i=1}^{N} V_i \).

\[\text{MST:} \]
\[\text{input: } G = (V, E) \text{ with } w(e) > 0.\]
\[\text{output: } \text{tree } T \text{ with min weight.}\]

\[\text{Claim: } \text{MST} \in \text{NP}\]

\[\text{Proof: } \text{Given } G \& T, \text{ can run DFS to verify that } T \text{ is a tree. But how do we verify its min weight?}\]
\[\text{Run Kruskal's & compare its weight, this is } \text{poly}(n) \text{ time.}\]

Thus, \text{MST} \in \text{NP.}
$NP = \text{nondeterministic poly-time}$
$
=\text{problems that can be solved in poly-time on a non-deterministic machine.}$

↑ allowed to guess at each step

(↑ an accepting path)

$NP = \text{all search problems} = \text{problems can verify solutions efficiently.}$

$P = \text{search problems that can be solved in poly-time.}$
$= \text{problems can solve efficiently.}$

$P \subseteq NP$

$\text{solve efficiently} \rightarrow \text{verify efficiently}$

is verifying as hard as constructing solutions?

is verifying a proof as hard as constructing a proof?
Clearly, $P \neq NP$.

If $P = NP$ then if we can verify solutions efficiently then we can construct solutions efficiently.

If $P \neq NP$ then there are some search problems that can't be solved efficiently.

What problems can't be solved efficiently?

(assuming $P \neq NP$)

NP-complete problems: hardest problems in NP.

Colorings is NP-complete which means:

\[
\begin{aligned}
\text{a)} & \; \text{Colorings} \in NP \\
\text{b)} & \; \text{if we can solve colorings in polytime then we can solve every problem in NP in polytime.}
\end{aligned}
\]

Thus if $P \neq NP$, then no polytime algorithm for colorings.
How to show (b)?
Problems A & B (for example, A=MST, B=Colorings)

A → B (or A ≤ B)
Means we can reduce A to B.

if we can solve B in poly-time then we can use that algorithm as a black-box to solve A in poly-time.

Suppose there is an efficient (poly-time) alg. for B
We'll build an alg. for A:

Reducing BA to AB
A → B → BA (see even I mess it up!)
We need to define f & h:

f: transform input for A to input for B
h: transform solution S to B to solution for A

Then $h(S)$ for I

Need to prove that:

S is a solution to $f(I)$

Then $h(S)$ is a solution for I

& if NO solution for $f(I)$

Then NO solution for I

in other words, S is a solution to $f(I)$ \iff $h(S)$ is a solution to I.
To show Colorings is NP-complete, we need to show:

a) Colorings ∈ NP
b) for all A ∈ NP, A → Colorings.

How to do (b) for all A ∈ NP?

Suppose we know SAT is NP-complete.

Thus, A → SAT. for all A ∈ NP.

Suppose we show SAT → Colorings.

Then: A → SAT → Colorings so A → Colorings.

Therefore to show colorings is NP-complete:

a) Colorings ∈ NP
b) for a known NP-complete Problem A, show A → Colorings.