Median:

Given an unsorted list $A = [a_1, \ldots, a_n]$ of n numbers

Find the median.
(assume n is odd, then for $n=2l+1$, we want to find the $(l+1)^{st}$ smallest number.)

Easy algorithm: Sort A in $O(n \log n)$ time.

Our goal: $O(n)$ time algorithm.

Basic idea is like QuickSort:

1) Choose a good pivot p. (How?)
2) Partition A into $A_{<p}, A=p, A_{>p}$.
3) Recurse on the appropriate one of the 3 sets.
 If looking for k^{th} smallest in A, then:
 a) if $k \leq |A_{<p}|$, then find k^{th} smallest in $A_{<p}$
 b) if $|A_{<p}| < k \leq |A_{<p}| + |A=p|$, then output p
 c) if $k > |A_{<p}| + |A=p|$, then find $(k - |A_{<p}| - |A=p|)^{th}$ smallest in $A_{>p}$.
Example: \(A=\{5, 2, 20, 17, 11, 13, 8, 9, 11\} \)

Say \(p=11 \)

\[A_{<p}=\{5, 2, 8, 9\}, \quad A_{=p}=\{11, 11\}, \quad A_{>p}=\{20, 17, 13\} \]

Size 4 \hspace{1cm} Size 2 \hspace{1cm} Size 3

if \(k \leq 4 \), then find \(k \)-th smallest in \(A_{<p} \)

if \(5 \leq k \leq 6 \) then \(11 \) is the \(k \)-th smallest

if \(k > 6 \), then find the \((k-6) \)-th smallest in \(A_{>p} \)

How to choose the pivot \(p \)?

Aiming for \(O(n) \) running time:

So we want a recurrence such as:

\[T(n) = T\left(\frac{9}{10}n\right) + O(n) = O(n) \]

in fact for any constant \(c < 1 \),

\[T(n) = T(cn) + O(n) = O(n) \]

More generally, for constants \(a, b > 0 \),

if \(a+b < 1 \) then

\[T(n) = T(an) + T(bn) + O(n) = O(n) \]

We'll use it with \(a=\frac{1}{5} \) \& \(b=\frac{7}{10} \)
We'd like a pivot p so that:

$$|A_p| \leq \frac{3}{4}n \quad \& \quad |A_{\bar{p}}| \leq \frac{3}{4}n$$

Then our running time will be:

$$T(n) \leq T\left(\frac{3}{4}n\right) + O(n) = O(n)$$

Hence, say P is a good pivot if:

$$|A_p| \leq \frac{3}{4}n \quad \& \quad |A_{\bar{p}}| \leq \frac{3}{4}n.$$

Think of sorted A:

So to find the median, we need a "near-median".

How can we find a good pivot in $O(n)$ time?
Randomized approach:

Choose a random element of A.
Check if it's a good pivot, if it is good, use it as p else try again.

of elements of A that are good = \(\frac{1}{2} \)

\[\Rightarrow \text{Probability that random element of A is a good pivot} \]
\[= \frac{\frac{1}{2}}{n} = \frac{1}{2n} \]

How many times do you have to flip a coin to until you get a heads?
In expectation, 2 times.

Here, in expectation, we have to choose 2 random elements of A until we get a good pivot.

Then, expected running time is

\[T(n) = T\left(\frac{3}{4}n\right) + O(n) = O(n) \]

But this is just the expectation and many times it may be much worse.
So we want worst-case running time.
Deterministic approach:

Want to find a subset S of A.
Find the median(S) recursively, and use $P = \text{median}(S)$.

Say $|S| = \frac{n}{5}$ (the choice of $\frac{1}{5}$ doesn't matter)

Worst-case: Save the $\frac{n}{5}$ smallest elements of A.

So median(S) is the $\frac{N}{10}$th smallest of A.

Then, $|A < p| \leq \frac{9}{10}n \& |A > p| \leq \frac{9}{10}n$.

Since it takes $T(\frac{n}{5})$ time to find median(S) recursively.

Our running time is then:

$$T(n) \leq T(\frac{n}{5}) + T(\frac{9}{10}n) + O(n)$$

but $\frac{1}{5} + \frac{9}{10} > 1$ so this doesn't solve to $O(n)$!
Need a more clever choice of S. For each $x \in S$, want that at least a few elements of A are $\geq x$ & a few are $\leq x$.

So break A into groups of size 5 (as a power of 5)

Groups $G_1, G_2, \ldots, G_{\frac{n}{5}}$ each has 5 elements.

Since a group G_i has only 5 elements, we can sort it in $O(1)$ time, and then its median is the middle element.

Let m_i be the median of G_i.

Let $S = \{ m_1, m_2, \ldots, m_{\frac{n}{5}} \}$

We'll use these $\frac{n}{5}$ medians as our set S.

Let $p = \text{Median}(S)$.
New algorithm:

Select \((A, k)\):

input: unsorted \(A = [a_1, \ldots, a_n]\) (where \(n\) is a power of 5) & integer \(k\) where \(1 \leq k \leq n\)

output: \(k\)th smallest of \(A\).

1) Break \(A\) into \(\frac{n}{5}\) groups of 5 elements each. Call these groups \(G_1, G_2, \ldots, G_{\frac{n}{5}}\)

2) For \(i = 1 \rightarrow \frac{n}{5}\), sort \(G_i\)

3) Let \(m_i = \text{median}(G_i)\)

 Let \(S = \{m_1, m_2, \ldots, m_{\frac{n}{5}}\}\)

4) \(p = \text{Select}(S, \frac{n}{10})\) (so \(p\) is the median of \(S\))

6) If \(k \leq |A < p|\), then return \((\text{Select}(A < p, k))\)

 If \(|A_p| < k \leq |A < p| + 1 |A = p|\)

 Then return \((p)\)

 If \(k > |A < p| + 1 |A = p|\)

 Then return \((\text{Select}(A > p, k - |A < p| - |A = p|))\)
Claim: \(p \) is a good pivot.

In particular,
\[
\geq \frac{3n}{10} \text{ elements of } A \text{ are } \leq p \Rightarrow |A_{\geq p}| \leq \frac{7n}{10}
\]
\[
\geq \frac{3n}{10} \text{ of } A \text{ are } \geq p \Rightarrow |A_{<p}| \leq \frac{7n}{10}
\]

From the claim, the running time is
\[
T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n)
\]

\[
\uparrow \quad \uparrow \quad \uparrow
\]

to find \(\text{median}(S)\) \quad to recurse \quad to break \(A \)

\[
\text{step (4)} \quad \text{step (6)} \quad \text{into groups}
\]

\[
\text{because of the} \quad \text{find medians} \quad \text{find medians}
\]

\[
\text{claim} \quad \text{of every group} \quad \text{of every group}
\]

\[
\text{Partition } A \quad \text{into } A_{<p}, A_{>p}
\]

\[
\text{steps 1, 2, 5.}
\]

Since \[
\frac{1}{5} + \frac{7}{10} = \frac{9}{10} < 1
\]

This solves to: \(T(n) = O(n) \).
Proof of the claim:

Sort the groups by their medians, so that:

\[m_1 \leq m_2 \leq \ldots \leq m_{\frac{n}{5}} \]

Then \[p = \frac{m_n}{10} \]

Here's the picture:

Which elements of S are guaranteed to be \(\leq p \)?

\(\geq \frac{3n}{10} \) for each of these, 3 elements in its group are \(\leq p \).

Hence, \(\geq \left(\frac{3n}{10} \right) \) are \(\leq p \).

Similarly, \(\geq \frac{3n}{10} \) are \(\geq p \).