Last class:

DAG = Directed acyclic graph

Topological ordering = order vertices of a DAG
so that all edges go left → right
(low → high)

Key: for a DAG, its DFS tree has no
backedges, hence for all other edges \(\overrightarrow{vw} \),
\(\text{Post}(v) > \text{post}(w) \)

Topological sorting alg:
Run DFS & order by \(V \) Post #.

Example:
Source vertex = vertex with no incoming edges.
Sink vertex = no outgoing edges.

DAG has ≥ 1 source & ≥ 1 sink

1st vertex in top ordering last must be a source
must be a source (might be others)

Alternative topological sorting algorithm:
1. Find a sink, output it, delete it.
2. Repeat (1) until the graph is empty.
(can do with source instead of sink)
Connectivity in \textit{directed} graphs:

Vertices \(v \) \& \(w \) are strongly connected if there is a path \(v \to w \) \& \(w \to v \).

\(\text{SCC} = \text{maximal set of strongly connected vertices} \)

\textbf{Example:}

\(\text{SCCS:} \ T,A,B,E,F,G,H,I,J,K,L \)

Think of meta-vertex for each SCC & edge \(S \to S' \) if some \(w \in S \) \& \(z \in S' \) has edge \(wz \)

Then:\n
\(\text{It's a \textit{DAG!}} \)
Property: Every directed graph is a DAG of its SCCs.

Why? If path from $S \rightarrow S'$ & path $S' \rightarrow S$ then SUS is a SCC
So $S & S'$ are not maximal sets.

hence the meta-graph has no cycles.

Our goal: find SCCs & find topological ordering of SCCs.

High-level approach: Find sink SCC, output it, delete it, & repeat
How to find a sink SCC?

If we find a vertex \(v \in \text{sink SCC} \) then run \(\text{Explore}(v) \), this will visit all vertices in this sink SCC & no other vertices.

(Example: if \(v \) is \(H, I, J, K \) or \(L \), then we visit these \& nothing else.)

How do we find a vertex in a sink SCC?

In topological ordering of a DAG vertex with lowest postorder \# is at the end so it's a sink.

In a general directed graph, is the vertex with lowest post \# guaranteed to lie in a sink SCC?

No, consider: B \rightarrow A \rightarrow C

DPS: tree

\[\begin{align*}
& A & \rightarrow & 1, 6 \\
& B & \rightarrow & \text{tree}, \quad 2, 3 \\
& C & \rightarrow & 4, 5 \\
& \text{SCC's:} & A, B \rightarrow & C
\end{align*} \]
But notice that A has the highest post & it lies in a source SCC.

Key lemma: In a general directed graph, for any DFS tree, vertex \(v \) with highest postorder \(\# \) lies in a source SCC.

So we can get a vertex in a source SCC but we need a vertex in a sink SCC.

Flip the graph.

For \(G = (V,E) \), let \(G^R = (V,E^R) \)

where \(E^R = \{ vw : \overrightarrow{vw} \in E \} \)

So reverse every edge.

Source SCC in \(G \) = Sink SCC in \(G^R \)
Sink SCC in \(G \) = Source SCC in \(G \).
Scc algorithm:

For input $G = (V, E)$,

2. Run DFS on G^R.
3. Order V by decreasing Post #1 from step 2.
4. Run the (undirected) connected component algorithm on directed G (with V ordered as in 3).

DFS-cc(\(G\)):

for all v, visited(v) = False
cc = 0
for all $w \in V$ (ordered by)
 if not visited(w) then $\text{cc}++$
 Explore(w)

Explore(w):

visited(w) = True
ccnum(w) = cc
for all $\ell : \overrightarrow{w\ell} \in E$:
 if not visited(ℓ) then Explore(ℓ)

Running time: $O(n+m)$.
Proof of key Lemma: (vertex v^* with highest Post # lies in a source SCC)

Claim 1: if S & S' are SCCs & an edge $\overline{YZE}E$ where YES, ZES, then max Post # in $S > max$ Post in S'.

hence can topologically sort the SCCs by the max Post # in each SCC.

So SCC with max Post # will be 1st & hence is a source SCC.

So the vertex v^* with max Post # will be in this source SCC.
Proof of claim:

There is an edge $S \rightarrow S'$ so there is a path $S \rightarrow S'$ and hence there is no path $S' \rightarrow S$.

Let z be the 1st vertex in SUS' visited by DFS.

If $z \in S$ then all of SUS' is reachable from z so all of SUS' is in z's subtree in the DFS tree. Hence, $\text{post}(z) > \text{post}(y)$ for $y \in SUS'-zz$.

So $z \in S$ has max post #.

If $z \in S$, then we see all of S' before seeing any of S. So $\text{post}(s') > \text{post}(s)$.

A finish explaining.