Next exams:

Thursday 10/31: Graph algorithms

HWs due **Monday 10/21** or **Wed. 10/23**
& **Monday 10/28**

Thursday 11/21: NP-completeness

No class—**Tuesday 11/26**

See class website.
Graphs:

\[G = (V, E) \]
\[V = \text{vertices} \]
\[E = \text{edges} \]
\[n = |V| \]
\[m = |E| \]

Undirected graphs: edge \((i, j) \in E\) means \(i \& j\) connected by an edge.

Directed graphs: \(i \rightarrow j \in E\) means edge from \(i\) to \(j\).

Representing graphs:

1) Adjacency matrix \(A\) size \(O(n^2)\)
2) Adjacency list size \(O(n+m)\)

Exploring graphs:

DFS = depth first search
BFS = breadth first search.
DFS:

Stack = LIFO
= last-in, first-out

push

pop

BFS:

Queue = FIFO
= first-in, first-out

enqueue

dequeue

Example:

![Graph Diagram]

tree edges
back edges
DFS: can implement a stack using recursion.

Pseudocode:

\[
\text{DFS}(G): \\
\text{for all } v \in V, \text{ set } \text{visited}(v) = \text{FALSE} \\
\text{Explore}(v) \\
\text{for all } w \in V, \text{ if not } \text{visited}(v) \text{ then } \text{Explore}(v) \\
\]

\[
\text{Explore}(w): \\
\text{visited}(w) = \text{TRUE} \\
\text{for all } (w, z) \in E: \\
\text{if not } \text{visited}(z) \text{ then } \text{Explore}(z) \\
\]

Explore: finds all vertices reachable from \(z \). Can use to find connected components.
For undirected G, vertices v & w are connected if there is a path between v & w.

Connected components: maximal set of connected vertices.

Example:

![Graph](image)

3 components: $\{A, B, E, I, J\}$, $\{F, I, G, D, H, K, L\}$

To find connected components:

1) Choose arbitrary start vertex z
2) Run $\text{Explore}(z)$ to find component containing z
3) Choose an unexplored z & repeat.

Same pseudocode as DFS just keep track of connected component #.
Here's the pseudocode:

DFS(G):

for all \(v \in V \), \(\text{visited}(v) = \text{FALSE} \)

\(cc = 0 \)

for all \(v \in V \),

if not \(\text{visited}(v) \)

then \([cc++] \)

\[\text{Explore}(v) \]

Explore(z):

\(\text{visited}(z) = \text{TRUE} \)

\(\text{ccnum}(z) = cc \)

for each \((z, w) \in E \):

if not \(\text{visited}(w) \)

then \(\text{Explore}(w) \)

Running time: \(O(n+m) \), for \(G \) in adjacency list representation.
How about connectivity in directed graphs?

- Need more info from DFS.
- Add a clock
- Keep track of preorder # & postorder #

\[\text{Pre}(v) = \text{time start exploring } v\]
\[\text{Post}(v) = \text{time finish exploring all neighbors of } v\]

DFS(G):

- For all \(v \in V\), \(\text{visited}(v) = \text{FALSE}\)
- \(\text{clock} = 1\)
- For all \(v \in V\), if not \(\text{visited}(v)\)
 - then Explore\((v)\)

Explore\((v)\):

- \(\text{visited}(v) = \text{TRUE}\)
- \(\text{Pre}(v) = \text{clock}\)
- \(\text{clock}++\)
- For every \((v,w) \in E\)
 - if not \(\text{visited}(w)\) then Explore\((w)\)
- \(\text{Post}(w) = \text{clock}\)
- \(\text{clock}++\)
Example:

Let's run DFS starting at B
3 types of non-tree (unexplored) edges

Forward: $D \rightarrow G$: vertex to descendant

$\text{Pre}(D) < \text{pre}(G) < \text{Post}(G) < \text{Post}(D)$

$b/c \ G \ is \ in \ subtree \ of \ G$

Back: $E \rightarrow A, F \rightarrow B$: vertex to ancestor

$\text{Pre}(B) < \text{pre}(F) < \text{Post}(F) < \text{Post}(B)$

$F \ is \ in \ B's \ subtree$

Cross: $F \rightarrow H, H \rightarrow G$

$\text{Pre}(H) < \text{post}(H) < \text{pre}(F) < \text{Post}(F)$

$\text{Start & finish } H \ before \ start/finish \ F.$
Property: Directed G has a cycle if its DFS tree contains a back edge.

Proof:

\Rightarrow if G has a cycle C, let v be 1st vertex in C visited in the DFS. Then $C \setminus v$ is reachable from v so all are in v's subtree of the DFS tree.

\Rightarrow ≥ 1 edge from $C \setminus v$ to v which is a back edge.

\Leftarrow Say the DFS tree has a back edge $w \rightarrow v$.
Then w is a descendant of v so there is a path P from v to w.

$\&$ taking $P \cup (w, v)$ gives a cycle.
So if no cycles in directed G then no back edges.

For back edge $w \rightarrow v$, $\text{Post}(w) < \text{Post}(v)$

For all other edges $w \rightarrow v$, $\text{Post}(v) < \text{Post}(w)$.

So can detect if G has a cycle by checking Post #\'s to see if we find a back edge.
DAG = Directed acyclic graph.
 no cycles hence no back edges

Topologically sorting a DAG
= order the vertices so that
 all edges go left to right
 (lower #) (higher #)

Easy: sort by decreasing Post #
 highest Post # → lowest Post #

Since no back edges,
 every edge w → v
 has Post(w) > Post(v)
 so left → right.
Example:

Run DFS:

Topologically sorted as:

(There are other topological orderings)