Kruskal's MST Algorithm:

For input $G=(V,E)$
Sort E by weight
Let $X=\emptyset$
Go through E in order:
for edge $e=(y,z)$
if $X \cup e$ is acyclic
then add e into X

Why is it correct?

Cut Property: For $G=(V,E)$,
consider $X \subseteq E$ where XCT for a MST T.
Take any SCV where no edge of X crosses $S \rightarrow \overline{S}$.
Let e^* be the min wt. edge in E crossing $S \rightarrow \overline{S}$.
Then, $X \cup e^*CT$ for a MST T.
For Kruskal's, assume current \(X \cup C \) for a MST.
Suppose we're adding edge \(e = (y, z) \).
That means in \(X \), \(y \) & \(z \) are disconnected.
Let \(c(y) \) be \(y \)'s component,
& \(c(z) \) be \(z \)'s component.
Let \(S = c(y) \).
Note, no edge of \(X \) crosses \(S \).
otherwise \(c(y) \) would be bigger.
And \(e \) is the min wt. edge of \(E \)
crossing \(S \).
otherwise we would have considered that lighter edge earlier & added it to \(X \) and expanded \(c(y) \).
Thus by the cut property,
\(X \cup e \cup C \) for a MST.
Union-find data structure:

- Collection of sets, each set corresponds to a component in the graph \((V, E)\).
- Each set has a unique name which is the root of its "tree".

Operations:

- `MakeSet(x)`: create a new set just containing \(x\).
- `Find(x)`: return name of set containing \(x\).
- `Union(x, y)`: Merge sets containing \(x\) and \(y\).

\(O(1)\) time

\(O(\log n)\) time
Kruskal \((G, w)\)

for all \(z \in V\), MakeSet\((z)\)

\(X = \emptyset\)

Sort \(E\) by \(\uparrow\) weight.

For edge \(e = (y, z)\): (go through \(E\) in \(\uparrow\) order)

if \(\text{Find}(y) \neq \text{Find}(z)\)

then \(\left[\text{add } e \text{ to } X \right] \)

\(\text{Union}(y, z)\)

\(\text{Return } (X)\)

Run time:

Sorting \(E\) \(\Rightarrow \) \(O(m \log n)\) time.

\(\wedge\) \(\text{MakeSets} \Rightarrow \) \(O(n)\)

\(O(m)\) \(\text{finds} \& \text{Unions} \Rightarrow \) \(O(m \log n)\)

Total: \(O(m \log n)\) time.
Union-find data structure:

Each set is a directed tree:
- edges point up to the root
- name of the set is the root
Every node also has its rank

\[\text{rank}(x) = \text{height of subtree below } x \]
\[\pi(x) = \text{parent of } x \]
if \(\pi(x) = x \) then \(x \) is the root.

Example: \(\{A,B,E,G,\pi\} \)

Diagram:

\[\text{Diagram with tree structure showing nodes } A, B, C, D, E, F, G, H, I, J \]
MakeSet(x):
\[\Pi(x) = x \]
\[\text{rank}(x) = 0 \]

Find(x):
While \(x \neq \Pi(x) \) do:
\[x = \Pi(x) \]

Return(x)

To merge 2 sets, point root with smaller depth to other root
\[\Rightarrow \text{minimizes max depth.} \]

Union(x, y):
\[r_x = \text{find}(x) \]
\[r_y = \text{find}(y) \]
if \(\text{rank}(r_x) > \text{rank}(r_y) \) then
\[\Pi(r_y) = r_x \]
if \(\text{rank}(r_y) > \text{rank}(r_x) \) then
\[\Pi(r_x) = r_y \]
if \(\text{rank}(r_x) = \text{rank}(r_y) \) then
\[\Pi(r_x) = r_y \]
\[\text{rank}(r_y)++ \]
Key claim: max depth is \(\leq \log n \).

Claim 2: root of rank \(k \) has \(\geq 2^k \) nodes in its subtree (including itself).

Proof of claim 2:

Base case: \(k=0 \): count node itself so \(2^0 = 1 \) ✓

Assume true for nodes of rank \(\leq k-1 \).

To get node of rank \(k \), merge 2 nodes of rank \(k-1 \)

- each has \(\geq 2^{k-1} \) nodes by induction
- so new subtree has \(\geq 2 \times 2^{k-1} = 2^k \)

Proof of key claim:

Let \(l \) be # of nodes of rank \(k \).

Then \((l)(2^k) \leq n \)

So \(l \leq \frac{n}{2^k} \)

Let \(k = \log_2 n + 1 \), then \(l \leq \frac{1}{2} < 1 \) so no nodes of rank \(\log_2 n + 1 \).