3SAT:
input: Boolean formula f in CNF with n variables and m clauses where each clause has ≤ 3 literals.
output: satisfying assignment if one exists & NO otherwise.

Theorem: 3SAT is NP-complete.
We'll use the fact that SAT is NP-complete.

Need to show:
 a) 3SAT \in NP
 b) SAT \rightarrow 3SAT.

For (a):
Given an assignment σ, in $O(1)$ time per clause we can check that ≥ 1 literal is satisfied. Thus $O(m)$ total time to check that f is satisfied.
For b: SAT \rightarrow 3SAT.

Take input f for SAT.

We need to create input f' for 3SAT.

Then given a satisfying assignment for f', we need to define a satisfying assignment for f.

Finally, we need to show that:

f is satisfiable $\iff f'$ is satisfiable.

Example:

$$f = (x_3) \land (\overline{x_2} \lor x_3 \lor \overline{x_1} \lor \overline{x_4}) \land (x_2 \lor x_1)$$

Clauses C_1, C_2, C_3

Clauses C_1 & C_3 can stay the same but C_2 is too big for 3SAT.

Create a new variable y.

Look at $C_2' = (x_2 \lor x_3 \lor y) \land (\overline{y} \lor x_1 \lor \overline{x_4})$

Claim: C_2 is satisfiable $\iff C_2'$ is satisfiable.

We'll prove a more general claim shortly.
What if C is of size 5?

Say $C = (\overline{x}_2 \lor x_3 \lor \overline{x}_1 \lor \overline{x}_4 \lor x_5)$

Then create 2 new variables y_1 & y_2.

Let $C' = (\overline{x}_2 \lor x_3 \lor y_1) \land (\overline{y}_1 \lor \overline{x}_1 \lor y_2) \land (\overline{y}_2 \lor x_4 \lor x_5)$.

In general, for literals a_1, \ldots, a_k

for $C = (a_1 v a_2 v \ldots v a_k)$

add $k-3$ new variables y_1, \ldots, y_{k-3}

& replace C by:

$C' = (a_1 v a_2 v y_1) \land (\overline{y}_1 v a_3 v y_2) \land (\overline{y}_2 v a_4 v y_3) \land \ldots \land (\overline{y}_{k-4} v a_{k-2} v y_{k-3}) \land (\overline{y}_{k-3} v a_{k-1} v a_k)$

Claim: C is satisfiable \iff C' is satisfiable.

We'll prove something stronger:

C is satisfiable \iff there is an assignment to y_1, \ldots, y_{k-2} so that C' is satisfiable.
Thus, given a satisfying assignment to C' we ignore the assignment to the new variables & this same assignment for the original x_1, \ldots, x_n satisfies C.

Proof:

(⇒) Take assignment to a_1, \ldots, a_i satisfying C. $C = (a_1, v \ldots, v_{a_k})$ so at least 1 a_i is satisfied. Let a_i be min where a_i is satisfied.

So $a_i = T \implies \text{clause } i-1 \text{ in } C'$ is satisfied

$(\neg y_{a_i} v a_i v y_{i-1})$

Set $y_1 = y_2 = \ldots = y_{i-2} = T$

⇒ i-th $i-2$ clauses in C' are satisfied.

Set $y_{i-1} = \ldots = y_{k-2} = F$

⇒ clauses i, \ldots, $k-2$ in C' are satisfied.
Take assignment to \(a_1, \ldots, a_k, y_1, \ldots, y_{k-2} \) satisfying \(C' \).

Suppose \(a_1 = a_2 = \ldots = a_{k-2} = F \).

Then since \(C' \) is satisfied,

for clause 1 we must have that \(y_1 = T \)

for clause 2 \(y_2 = T \)

\[\vdots \]

for clause \(k-3 \) \(y_{k-3} = T \)

& then the last clause \((\overline{y_{k-3}} \lor a_{k-1} \lor a_k)\)

is not satisfied.

So \(\geq 1 \) of \(a_1, \ldots, a_k \) is set to \(T \).

& thus \(C \) is satisfied.
SAT \rightarrow 3SAT:

Given f for SAT.

Create a new formula f' as follows:

For each clause C in f

let $k = |C| = \# \text{ of literals in } C$.

if $k \leq 3$ then add C to f'

if $k > 3$ then:

create $k-3$ new variables

& replace C by C' as described before.

Use f' as input for 3SAT.

We saw that f is satisfiable $\Rightarrow f'$ is satisfiable.

And given a satisfying assignment for f'

we ignore the new variables & we have

a satisfying assignment for f.